Skip to main content
Log in

Master curve of filler localization in rubber blends at an equilibrium state

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, the phase-specific localization of filler in NBR/NR blends was characterized by means of the selective extraction method and wetting concept. A strong dependence of silica localization on the filler loading was found. A model based on thermodynamic data was proposed for a quantitative prediction of filler localization in rubber blends. The filler localization can be described by a master curve demonstrating a characteristic behavior in dependence on the filler surface tension data of blend components and filler. The effect of filler loading on the silica localization is sufficiently explained by this model by taking into consideration the deactivation of the silanol groups on the silica surface by adsorbed curing additives. Using the master curve, the surface tension of filler affected by curing additives and silane addition can be estimated that may be useful for evaluation and comparison of the effect of different coupling agents. Surface tension values of different fillers were estimated by means of the master curve and they lie in the same order compared to those reported in literature. A potential transfer of filler within a rubber blend can be also quantitatively predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Mark JE, Erman B, Eirich FR (2005) Science and technology of rubber, 3rd edn. Elesevier Academic Press, London

    Google Scholar 

  2. Wolff S (1996) Rubber Chem Technol 69:325

    Article  CAS  Google Scholar 

  3. Morton M (1999) Rubber technology, 3rd edn. Kluwer Academic Publishers, Boston

    Google Scholar 

  4. Dick JS (2009) Rubber technology: compounding and testing for performance, 2nd edn. Hanser Publications, Munich

    Google Scholar 

  5. Hess WM, Chirico VE (1977) Rubber Chem Technol 50:301

    Article  CAS  Google Scholar 

  6. Hess WM, Scott CE, Callan JE (1967) Rubber Chem Technol 40:814

    Article  Google Scholar 

  7. Sirca AK, Lamond TG (1973) Rubber Chem Technol 46:178

    Article  Google Scholar 

  8. Sircar AK, Lamond TG, Pinter PE (1974) Rubber Chem Technol 47:48

    Article  CAS  Google Scholar 

  9. Soares BG, Gubbels F, Jerome R (1997) Rubber Chem Technol 70:60

    Article  CAS  Google Scholar 

  10. Soares BG, Gubbels F, Jerome R, Vanlathem E, Deltour R, Blacher S, Brouers F (1998) Chem Mater 10:1227

    Article  Google Scholar 

  11. Gubbels F, Jerome R, Teyssib Ph, Vanlathem E, Deltour R, Calderone A, Parentb V, Bredas JL (1994) Macromolecules 27:1972

    Article  CAS  Google Scholar 

  12. Sirisinha Ch, Prayoonchatphan N (2001) J Appl Polym Sci 81:3198

    Article  CAS  Google Scholar 

  13. Hu W, Ellul MD, Tsou AH, Datta S (2007) Rubber Chem Technol 80:1

    Article  CAS  Google Scholar 

  14. Massie JM, Hirst RC, Halasa AF (1993) Rubber Chem Technol 66:276

    Article  CAS  Google Scholar 

  15. Callan JE, Hess WM, Scott CE (1971) Rubber Chem Technol 44:814

    Article  CAS  Google Scholar 

  16. Walters MH, Keyte DN (1965) Rubber Chem Technol 38:62

    Article  Google Scholar 

  17. Lee B (1984) In: Han CD (ed) Polymerblends and composites in multiphase systems, vol 206. Advances in Chemistry Series, Washington, p 185

  18. Jeon IH, Kim H, Kim SG (2003) Rubber Chem Technol 76:1

    Article  CAS  Google Scholar 

  19. Herrmann V, Unseld K, Fuchs HB (2001) Kautsch Gummi Kunstst 54:453

    CAS  Google Scholar 

  20. Tsou AH, Waddell WH (2002) Kautsch Gummi Kunstst 55:382

    CAS  Google Scholar 

  21. Wang CC, Donnet JB, Wang TK (2005) Rubber Chem Technol 78:17

    Article  Google Scholar 

  22. Maiti S, De SK, Bhowmick AK (1992) Rubber Chem Technol 65:293

    Article  CAS  Google Scholar 

  23. Cotton GR, Murphy LJ (1988) Kautsch Gummi Kunstst 41:54

    Google Scholar 

  24. Woolard CD, McFadzean BJ (2000) Proceedings of the 28th annual conference on thermal analysis and application, Orlando

  25. Klüppel M, Schuster RH, Schaper J (1998) Gummi Fasern Kunstst 51:508

    Google Scholar 

  26. Klüppel M, Schuster RH, Schaper J (1999) Rubber Chem Technol 72:91

    Article  Google Scholar 

  27. Phewphong P, Saeoui P, Sirisinha Ch (2008) Polym Test 27:873

    Article  CAS  Google Scholar 

  28. Bandyopadhyay A, Thakur V, Pradhan S, Bhowmick AK (2010) J Appl Polym Sci 115:1237

    Article  CAS  Google Scholar 

  29. Wootthikanokkhan J, Rattanathamwat N (2006) J Appl Polym Sci 102:248

    Article  CAS  Google Scholar 

  30. Sumita M, Sakata K, Asai S, Miyasaka K, Nakagawa H (1991) Polym Bull 25:265

    Article  CAS  Google Scholar 

  31. Sumita M, Sakata K, Hayakawa Y, Asai S, Miyasaka K, Tanemura M (1992) Colloid Polym Sci 270:134

    Article  CAS  Google Scholar 

  32. Lim SK, Hong EP, Song YH, Choi HJ (2010) Chin Macromol Mater Eng 295:329

    Article  CAS  Google Scholar 

  33. Shojaei A, Faghihi M (2010) Polym Adv Technol 21:356

    CAS  Google Scholar 

  34. Elias L, Fenouillot F, Majeste JC, Martin G, Cassagnau P (2008) J Polym Sci Part B 46:1976

    Article  CAS  Google Scholar 

  35. Fenouillot F, Cassagnau P, Majeste JC (2009) Polymer 50:1333

    Article  CAS  Google Scholar 

  36. Sun Y, Jia MY, Guo ZX, Yu J, Nagai S (2011) J Appl Polym Sci 120:3224

    Article  CAS  Google Scholar 

  37. Sun Y, Guo ZX, Yu J (2010) Macromol Mater Eng 295:263

    Article  CAS  Google Scholar 

  38. Göldel A, Marmur A, Kasaliwal G, Pötschke P, Heinrich G (2011) Macromolecules 44:6094

    Article  Google Scholar 

  39. Wu D, Lin D, Zhang J, Zhou W, Zhang M, Zhang Y, Wang D, Lin B (2011) Macromol Chem Phys 212:613

    Article  CAS  Google Scholar 

  40. Ziegler J, Schuster RH (2003) Kautsch Gummi Kunstst 56:159

    CAS  Google Scholar 

  41. Le HH, Qamer Z, Ilisch S, Radusch H-J (2006) Rubber Chem Technol 79:621

    Article  CAS  Google Scholar 

  42. Ali Z, Le HH, Ilisch S, Thurn-Albrecht T, Radusch H-J (2010) Polymer 51:4580

    Article  CAS  Google Scholar 

  43. Le HH, Ilisch S, Kasaliwal GR, Radusch H-J (2007) Kautsch Gummi Kunstst 60:241

    CAS  Google Scholar 

  44. Le HH, Ilisch S, Radusch H-J (2008) Rubber Chem Technol 81:767

    Article  CAS  Google Scholar 

  45. Le HH, Ilisch S, Heidenreich D, Wutzler A, Radusch H-J (2010) Polym Compos 31:1701

    Article  CAS  Google Scholar 

  46. Le HH, Heidenreich D, Ilisch S, Osswald K, Radusch H-J (2011) Rubber Chem Technol 84:41

    Article  CAS  Google Scholar 

  47. Hildebrand JH, Scott RL (1964) The solubility of nonelecrolytes. Dover Publications, New York

    Google Scholar 

  48. Scatchard G (1931) Chem Rev 8:321

    Article  CAS  Google Scholar 

  49. Scatchard G (1949) Chem Rev 44:7

    Article  CAS  Google Scholar 

  50. Paul DR, Newman S (1978) Polymer blends. Academic Press, New York

    Google Scholar 

  51. Girifalco LA, Good RJ (1957) J Phys Chem 61:904

    Article  CAS  Google Scholar 

  52. Stoeckelhuber KW, Das A, Jurk R, Heinrich G (2010) Polymer 51:1954

    Article  CAS  Google Scholar 

  53. Jönsson U, Malmqvist M, Ronberg I (1985) Biochem J 227:363

    Google Scholar 

  54. Kralevich ML, Koening JL (1998) Rubber Chem Technol 71:300

    Article  CAS  Google Scholar 

  55. Ono S, Ito M, Tokumitsu H, Seki K (1999) J Appl Polym Sci 74:2529

    Article  CAS  Google Scholar 

  56. Ono S, Kiuchi Y, Sawanobori J, Ito M (1999) Polym Int 48:1035

    Article  CAS  Google Scholar 

  57. Wang MJ, Wolff S, Donnet JB (1991) Rubber Chem Technol 64:714

    Article  CAS  Google Scholar 

  58. Wang MJ, Wolff S (1992) Rubber Chem Technol 65:715

    Article  CAS  Google Scholar 

  59. Zhang Q, Yang H, Fu Q (2001) Polymer 45:1913

    Article  Google Scholar 

  60. Yang H, Zhang X, Qu C, Li B, Zhang L, Zhang Q, Fu Q (2007) Polymer 48:860

    Article  CAS  Google Scholar 

  61. Pena JM, Allen NS, Edge M, Liauw CM, Noiset O, Valange B (2001) J Mater Sci 36:4419. doi:10.1023/A:1017922501039

    Article  CAS  Google Scholar 

  62. Ahn SH, Kim SH, Lee SG (2004) J Appl Polym Sci 94:812

    Article  CAS  Google Scholar 

  63. Deshmukh GS, Pathak SU, Peshwe DR, Ekhe JD (2010) Bull Mater Sci 33:277

    Article  CAS  Google Scholar 

  64. Maged AO, Ayman A, Ulrich WS (2004) Polymer 45:1177

    Article  Google Scholar 

  65. Erika F, Bela P (1997) J Colloid Interface Sci 194:269

    Article  Google Scholar 

  66. Huang H, Tian M, Yang J, Li H, Liang W, Zhang L, Li X (2008) J Appl Polym Sci 107:3325

    Article  CAS  Google Scholar 

  67. Kosmalska A, Zaborski M, Slusarski L (2003) Macromol Symp 194:269

    Article  CAS  Google Scholar 

  68. Laning SH, Wagner MP, Sellers JW (1959) J Appl Polym Sci 2:225

    Article  CAS  Google Scholar 

  69. Reuvekamp LAEM, Debnath SC, Ten Brinke JW, Van Swaaij PJ, Noordermeer JWM (2009) Rubber Chem Technol 76:34

    Google Scholar 

  70. Castellano M, Conzatti L, Turturro A, Costa G, Busca G (2007) J Phys Chem B 111:4495

    Article  CAS  Google Scholar 

  71. Vidal A, Papirer E, Wang MJ, Donnet JB (1987) Chromatographia 23:121

    Article  CAS  Google Scholar 

  72. Wu S (1969) J Colloid Interface Sci 31:153

    Article  CAS  Google Scholar 

  73. Tamai Y (1976) Prog Colloid Polym Sci 61:93

    Article  CAS  Google Scholar 

  74. Park SJ, Jin SY, Kaang S (2005) Mater Sci Eng A 398:137

    Article  Google Scholar 

  75. Khayet M, Villaluenga JPG, Valentin JL, Lopez-Manchado MA, Mengual JI, Seoane B (2005) Polymer 46:9881

    Article  CAS  Google Scholar 

  76. Milmana N, Yoonb JK, Hickeya AJ, Burgess DJ (1993) Colloids Surf B Biointerfaces 1:315

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the German Research Foundation (DFG) for the financial support of this study and Prof. W. Focke (University of Pretoria, South Africa) for TEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. H. Le.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le, H.H., Osswald, K., Ilisch, S. et al. Master curve of filler localization in rubber blends at an equilibrium state. J Mater Sci 47, 4270–4281 (2012). https://doi.org/10.1007/s10853-012-6277-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6277-6

Keywords

Navigation