Skip to main content
Log in

Accelerated hydrolytic degradation of poly(lactic acid) achieved by adding poly(butylene succinate)

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this work, different contents (10–40 wt%) of poly(butylene succinate) (PBS) were introduced into poly(lactic acid) (PLA) through the common melt compounding processing. The microstructure and morphologies of the blends were investigated through differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD) and scanning electron microscope (SEM). The results showed that the presence of PBS neither induces the crystallization nor enhances the crystallinity of PLA matrix, and completely amorphous PLA was obtained in all samples. PBS exhibited dispersed particles in the PLA matrix and there were clear gaps between components. The hydrophilicity of samples was evaluated by measuring contact angles. The results demonstrated that adding PBS improved the hydrophilicity of samples. The hydrolytic degradation measurements were carried out at 37 °C in alkaline solution. The results showed that the presence of PBS accelerated the hydrolytic degradation of PLA matrix. Specifically, the higher the content of PBS was, the bigger the weight loss per unit area of sample was. The hydrolytic degradation mechanism was then analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hoglund A, Hakkarainen M, Edlund U, Albertsson AC (2009) Surface modification changes the degradation process and degradation product pattern of polylactide. Langmuir 26:378–383

    Article  Google Scholar 

  2. Tsuji H, Tezuka Y, Yamada K (2005) Alkaline and enzymatic degradation of l-lactide copolymers. II. Crystallized films of poly(l-lactide-co-d-lactide) and poly(l-lactide) with similar crystallinities. J Polym Sci Part B Polym Phys 43:1064–1075

    Article  CAS  Google Scholar 

  3. Li SM, Tenon M, Garreau H, Braud C, Vert M (2000) Enzymatic degradation of stereocopolymers derived from l-, dl- and meso-lactides. Polym Degrad Stab 67:85–90

    Article  CAS  Google Scholar 

  4. Liu L, Li SM, Garreau H, Vert M (2000) Selective enzymatic degradations of Poly(l-lactide) and poly(ε-caprolactone) blend films. Biomacromolecules 1:350–359

    Article  CAS  Google Scholar 

  5. Saha SK, Tsuji H (2006) Effects of molecular weight and small amounts of d-lactide units on hydrolytic degradation of poly(l-lactic acid)s. Polym Degrad Stab 91:1665–1673

    Article  CAS  Google Scholar 

  6. Ray SS, Bousmina M (2005) Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog Mater Sci 50:962–1079

    Article  CAS  Google Scholar 

  7. Fukuzaki H, Yoshida M, Asano M, Kumakura M (1989) Synthesis of copoly(d,l-lactic acid) with relative low molecular weight and in vitro degradation. Eur Polym J 25:1019–1026

    Article  CAS  Google Scholar 

  8. Zhou Q, Xanthos M (2008) Nanoclay and crystallinity effects on the hydrolytic degradation of polylactides. Polym Degrad Stab 93:1450–1459

    Article  CAS  Google Scholar 

  9. Gorrasi G, Pantani R (2013) Effect of PLA grades and morphologies on hydrolytic degradation at composting temperature: assessment of structural modification and kinetic parameters. Polym Degrad Stab 98:1006–1014

    Article  CAS  Google Scholar 

  10. Pantani R, Sorrentino A (2013) Influence of crystallinity on the biodegradation rate of injection-moulded poly(lactic acid) samples in controlled composting conditions. Polym Degrad Stab 98:1089–1096

    Article  CAS  Google Scholar 

  11. Li SM, Garreau H, Vert M (1990) Structure-property relationships in the case of the degradation of massive poly(a-hydroxy acid) in aqueous media Part 3 influence of the morphology of poly(l-lactic acid). J Mater Sci Mater Med 1:198–206

    Article  CAS  Google Scholar 

  12. Vert M, Li SM, Garreau H (1994) Attempts to map the structure and degradation characteristics of aliphatic polyesters derived from lactic and glycolic acid. J Biomater Sci Polym Edn 6:639–649

    Article  CAS  Google Scholar 

  13. Tsuji H, Ikada Y (1998) Properties and morphology of poly(L-lactide). II. Hydrolysis in alkaline solution. J Polym Sci Part A Polym Chem 36:59–66

    Article  CAS  Google Scholar 

  14. Tsuji H, Mizuno A, Ikada Y (2000) Properties and morphology of poly(l-lactide). III. Effects of initial crystallininty on long-term in vitro hydrolysis of high molecular weight poly(l-lactide) film in phosphate-buffered solution. J Appl Polym Sci 77:1452–1464

    Article  CAS  Google Scholar 

  15. Tsuji H, Nakahara K, Ikarashi K (2001) Poly(l-lactide), 8—high temperature hydrolysis of poly(l-lactide) films with different crystallinities and crystalline thicknesses in phosphate-buffered solution. Macromol Mater Eng 286:398–406

    Article  CAS  Google Scholar 

  16. Andersson SR, Hakkarainen M, Inkinen S (2010) Customizing the hydrolytic degradation rate of stereocomplex PLA through different PDLA architectures. Biomacromolecules 13:1212–1222

    Article  Google Scholar 

  17. Chung S (1995) Chain-end scission in acid catalyzed hydrolysis polylactide in solution. J Control Release 34:9–15

    Article  Google Scholar 

  18. Xu L, Crawford K, Gorman C (2011) Effects of temperature and pH on the degradation of poly(lactic acid) brushes. Macromolecules 44:4777–4782

    Article  CAS  Google Scholar 

  19. Fukushima K, Tabuani D, Dottori M, Armentano I, Kenny JM, Gamino G (2011) Effect of temperature and nanoparticle type on hydrolytic degradation of poly(lactic acid) nano- composites. Polym Degrad Stab 96:2120–2129

    Article  CAS  Google Scholar 

  20. Tsuji H, Nakahara K (2002) Poly(l-lactide). IX. Hydrolysis in acid media. J Appl Polym Sci 86:186–194

    Article  CAS  Google Scholar 

  21. Tsuji H, Ikarashi K (2004) In vitro hydrolysis of poly(l-lactide) crystalline residues as extended- chain crystallites. III. Effect of pH and enzyme. Polym Degrad Stab 85:647–656

    Article  CAS  Google Scholar 

  22. Tsuji H, Shimizu K, Sato Y (2012) Hydrolytic degradation of poly(l-lactic acid): combined effects of UV Treatment and crystallization. J Appl Polym Sci 125:2394–2406

    Article  CAS  Google Scholar 

  23. Picard E, Espuche E, Fulchiron R (2011) Effect of an organo-modified montmorillonite on PLA crystallization and gas barrier properties. Appl Clay Sci 53:58–65

    Article  CAS  Google Scholar 

  24. Shieh YT, Twu YK, Su CC, Lin RH, Liu GL (2010) Crystallization Kinetics Study of Poly(l-lactic acid)/Carbon Nanotubes Nanocomposites. J Polym Sci Part B: Polym Phys 48:983–989

    Article  CAS  Google Scholar 

  25. Shieh YT, Liu GL, Twu YK, Wang TL, Yang CH (2010) Effects of carbon nanotubes on dynamic mechanical property, thermal property, and crystal structure of poly(l-lactic acid). J Polym Sci Part B Polym Phys 48:145–152

    Article  CAS  Google Scholar 

  26. Zhao YY, Qiu ZB, Yang WT (2008) Effect of functionalization of multiwalled nanotubes on the crystallization and hydrolytic degradation of biodegradable poly(l-lactide). J Phys Chem B 112:16461–16468

    Article  CAS  Google Scholar 

  27. Zhao YY, Qiu ZB, Yang WT (2009) Effect of multi-walled carbon nanotubes on the crystallization and hydrolytic degradation of biodegradable poly(l-lactide). Compos Sci Technol 69:627–632

    Article  CAS  Google Scholar 

  28. Xu HS, Dai XJJ, Lamb PR, Li ZM (2009) Poly(l-lactide) crystallization induced by multiwall carbon nanotubes at very low loading. J Polym Sci Part B Polym Phys 47:2341–2352

    Article  CAS  Google Scholar 

  29. Suksut B, Deeprasertkul C (2011) Effect of nucleating agent on physical properties of poly(lactic acid) and its blend with natural rubber. J Polym Environ 19:288–296

    Article  CAS  Google Scholar 

  30. Jiang L, Zhang JW, Wolcott MP (2007) Comparison of polylactide/nano-sized calcium carbonate and polylactide/montmorillonite composites: reinforcing effects and toughening mechanisms. Polymer 48:7632–7644

    Article  CAS  Google Scholar 

  31. Wu DF, Wu L, Zhou WD, Sun YR, Zhang M (2010) Relations between the aspect ratio of carbon nanotubes and the formation of percolation networks in biodegradable polylactide/carbon nanotube composites. J Polym Sci Part B Polym Phys 48:479–489

    Article  CAS  Google Scholar 

  32. Yoon JT, Jeong YG, Lee SC, Min BG (2009) Influences of poly(lactic acid)-grafted carbon nanotube on thermal, mechanical and electrical properties of poly(lactic acid). Polym Adv Technol 20:20631–20638

    Article  Google Scholar 

  33. Ramontja J, Ray SS, Pillai SK, Luyt AS (2009) High-performance carbon nanotube-reinforced bioplastic. Macromol Mater Eng 294:839–846

    Article  CAS  Google Scholar 

  34. Luo YB, Li WD, Wang XL, Xu DY, Wang YZ (2009) Preparation and properties of nanocomposites based on poly(lactic acid) and functionalized TiO2. Acta Mater 57:3182–3191

    Article  CAS  Google Scholar 

  35. Huang JW, Hung YC, Wen YL, Kang CC, Yeh MY (2009) Polylactide/nano- and micro-scale silica composite films. I. Preparation and characterization. J Appl Polym Sci 112:1688–1694

    Article  CAS  Google Scholar 

  36. Kim HS, Chae YS II, Kwon H, Yoon JS (2009) Thermal degradation behavior of multi-walled carbon nanotube-reinforced poly(l-lactide) nanocomposites. Polym Int 58:826–831

    Article  CAS  Google Scholar 

  37. Huang JW, Hung YC, Wen YL, Kang CC, Yeh MY (2009) Polylactide/nano- and micro-scale silica composite films. II. Melting behavior and cold crystallization. J Appl Polym Sci 112:3149–3156

    Article  CAS  Google Scholar 

  38. Huang TC, Yeh JM, Yang JC (2010) Effect of silica size on the thermal, mechanical and biodegradable properties of polylactide/silica composite material prepared by melt blending. Adv Mater Res 123–125:1215–1218

    Article  Google Scholar 

  39. Yan SF, Yin JB, Yang JY, Chen XS (2007) Structural characteristics and thermal properties of plasticized poly(l-lactide)-silica nanocomposites synthesized by sol-gel method. Mater Lett 61:2683–2686

    Article  CAS  Google Scholar 

  40. Zhang J, Lou JZ, Ilias S, Krishnamachari P, Yan JZ (2008) Thermal properties of poly(lactic acid)/fumed silica nanocomposites: experiments and molecular dynamics simulations. Polymer 49:2381–2386

    Article  CAS  Google Scholar 

  41. Luo YB, Wang XL, Wang YZ (2012) Effect of TiO2 nanoparticles on the long-term hydrolytic degradation behavior of PLA. Polym Degrad Stab 97:721–728

    Article  CAS  Google Scholar 

  42. Qu M, Tu HL, Amarante M, Song YQ, Zhu SS (2014) Zinc oxide nanoparticles catalyze rapid hydrolysis of poly(lactic acid) at low temperatures. J Appl Polym Sci 131:40287–40293

    Google Scholar 

  43. Chen HM, Wang YP, Chen J, Yang JH, Zhang N, Huang T, Wang Y (2013) Hydrolytic degradation behavior of poly(l-lactide)/SiO2 composites. Polym Degrad Stab 98:2672–2679

    Article  CAS  Google Scholar 

  44. Flahiff CM, Blackwell AS, Hollis JM, Feldman DS (1996) Analysis of a biodegradable composite for bone healing. J Biomed Mater Res 32:419–424

    Article  CAS  Google Scholar 

  45. He LH, Sun J, Wang XX, Fan XH, Zhao QL, Cai LF, Song R, Ma Z, Huang W (2012) Unzipped multiwalled carbon nanotubes-incorporated poly(l-lactide) nanocomposites with enhanced interface and hydrolytic degradation. Mater Chem Phys 134:1059–1066

    Article  CAS  Google Scholar 

  46. Chen HM, Feng CX, Zhang WB, Yang JH, Huang T, Zhang N, Wang Y (2013) Hydrolytic degradation behavior of poly(l-lactide)/carbon nanotubes nanocomposites. Polym Degrad Stab 98:198–208

    Article  CAS  Google Scholar 

  47. de Paula EL, Mano V, Pereira FV (2011) Influence of cellulose nanowhiskers on the hydrolytic degradation behavior of poly(d , l-lactide). Polym Degrad Stab 96:1631–1638

    Article  Google Scholar 

  48. Paul MA, Delcourt C, Alexandre M, Degée Ph, Monteverde F, Dubois Ph (2005) Polylactide/montmorillonite nanocomposites: study of the hydrolytic degradation. Polym Degrad Stab 87:535–542

    Article  CAS  Google Scholar 

  49. Roy PK, Hakkarainen M, Albertsson AC (2010) Nanoclay effects on the degradation process and product patterns of polylactide. Polym Degrad Stab 97:1254–1260

    Article  Google Scholar 

  50. Chen HM, Chen JW, Chen J, Yang JH, Huang T, Zhang N, Wang Y (2012) Effect of organic montmorillonite on cold crystallization and hydrolytic degradation of poly(l-lactide). Polym Degrad Stab 97:2273–2283

    Article  CAS  Google Scholar 

  51. Eili M, Shameli K, Ibrahim NA, Yunus WMZW (2012) Degradability enhancement of poly(lactic acid) by stearate-Zn3Al LDH Nanolayers. Int J Mol Sci 13:7938–7951

    Article  CAS  Google Scholar 

  52. Shi YY, Du XC, Yang JH, Huang T, Zhang N, Wang Y, Yuan GP, Zhang CL (2014) Super toughened poly(l-lactide)/thermoplastic polyurethane blends achieved by adding dicumyl peroxide. Polym Plast Technol Eng 53:1344–1353

    Article  CAS  Google Scholar 

  53. Li YJ, Shimizu H (2009) Improvement in toughness of poly(l-lactide) (PLLA) through reactive blending with acrylonitrile-butadiene-styrene (ABS): morphology and properties. Eur Polym J 42:738–746

    Article  Google Scholar 

  54. Kumar M, Mohanty S, Nayak SK, Parvaiz MR (2010) Effect of glycidyl methacrylate (GMA) on the thermal, mechanical and morphological property of biodegradable PLA/PBAT blend and its nanocomposites. Bioresour Technol 101:8406–8415

    Article  CAS  Google Scholar 

  55. Al-ltry Lamnawar K, Maazouz A (2012) Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polym Degrad Stab 97:1898–1914

    Article  Google Scholar 

  56. Boufarguine M, Guinault A, Miquelard-Garnier G, Sollogoub C (2013) PLA/PHBV films with improved mechanical and gas barrier properties. Macromol Mater Eng 98:1065–1073

    Google Scholar 

  57. Nameroff TJ, Garant RJ, Albert MB (2004) Adoption of green chemistry: an analysis based on US patents. Res Policy 33:959–974

    Article  Google Scholar 

  58. Oyama HT, Tanaka Y, Kadosaka A (2009) Rapid controlled hydrolytic degradation of poly(l-lactic acid) by blending with poly(aspartic acid-co-l-lactide). Polym Degrad Stab 94:1419–1426

    Article  CAS  Google Scholar 

  59. Shirahase T, Komatsu Y, Marubayashi H, Tominaga Y, Asai S, Sumita M (2007) Miscibility and hydrolytic degradation in alkaline solution of poly(l-lactide) and poly(p-vinyl phenol) blends. Polym Degrad Stab 92:1626–1631

    Article  CAS  Google Scholar 

  60. Tsuji H, Muramatsu H (2001) Blends of aliphatic polyesters: V Non-enzymatic and enzymatic hydrolysis of blends from hydrophobic poly(l-lactide) and hydrophilic poly(vinyl alcohol). Polym Degrad Stab 71:403–413

    Article  CAS  Google Scholar 

  61. Huang Y, Ge FJ, Zhou YL, Jiang L, Dan Y (2014) Hydrolytic behavior of poly(lactic acid) films with different architecture modified by poly(dodecafluorheptyl methylacrylate). Eur Polym J 59:189–199

    Article  CAS  Google Scholar 

  62. Ojijo V, Ray SS, Sadiku R (2013) Toughening of Biodegradable polylactide/poly(butylene succinate-co-adipate) blends via in situ reactive compatibilization. ACS Appl Mater Inter 5:4266–4276

    Article  CAS  Google Scholar 

  63. Shibata M, Inoue Y, Miyoshi M (2006) Mechanical properties, morphology, and crystallization behavior of blends of poly(l-lactide) with poly(butylene succinate-co-l-lactate) and poly (butylene succinate). Polymer 47:3557–3564

    Article  CAS  Google Scholar 

  64. Papageorgiou DG, Chrissafis K, Pavlidou E, Deliyanni EA, Papageorgiou GZ, Terzopoulou Z, Bikiaris DN (2014) Effect of nanofiller’s size and shape on the solid state microstructure and thermal properties of poly(butylene succinate) nanocomposites. Thermochim Acta 590:181–190

    Article  CAS  Google Scholar 

  65. Aleman C, Lotz B, Puiggali J (2001) Crystal structure of the alpha-form of poly(l-lactide). Macromolecules 34:4795–4801

    Article  CAS  Google Scholar 

  66. Sasaki S, Asakura T (2003) Helix distortion and crystal structure of the alpha-form of poly(l-lactide). Macromolecules 36:8385–8390

    Article  CAS  Google Scholar 

  67. Wang RY, Wang SF, Zhang Y, Wan CY, Ma PM (2009) Toughening modification of PLLA/PBS blends via In Situ compatibilization. Polym Eng Sci 49:26–33

    Article  CAS  Google Scholar 

  68. Cho K, Lee J, Kwon K (2001) Hydrolytic degradation behavior of poly(butylene succinate)s with different crystalline morphologies. J Appl Polym Sci 79:1025–1033

    Article  CAS  Google Scholar 

  69. Tsuji H, Ikarashi K, Fukuda N (2004) Poly(l-lactide): XII. Formation, growth, and morphology of crystalline residues as extended-chain crystallites through hydrolysis of poly(l-lactide) films in phosphate-buffered solution. Polym Degrad Stab 84:515–523

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors express their sincere thanks to the National Natural Science Foundation of China (51473137) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Yp., Xiao, Yj., Duan, J. et al. Accelerated hydrolytic degradation of poly(lactic acid) achieved by adding poly(butylene succinate). Polym. Bull. 73, 1067–1083 (2016). https://doi.org/10.1007/s00289-015-1535-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-015-1535-9

Keywords

Navigation