Skip to main content

Advertisement

Log in

Bubble-templated Construction of Three-dimensional Ceramic Network for Enhanced Thermal Conductivity of Silicone Rubber Composites

  • Rapid Communication
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

With the continuous development of the electronics industry, the energy density of modern electronic devices increases constantly, thus releasing a lot of heat during operation. Modern electronic devices take higher and higher request to the thermal interface materials. Achieving high thermal conductivity needs to establish an interconnecting thermal conductivity network in the matrix. For this purpose, the suspension of Al2O3 and curdlan was first foamed to construct a bubble-templated continuous ceramic framework. Owing to the rapid gelation property of curdlan, we can easily remove moisture by hot air drying. Finally, the high thermally conductive composites are prepared by vacuum impregnation of silicone rubber. The result showed that composites prepared by our method have higher thermal conductivity than the samples obtained by traditional method. The thermal conductivity of the prepared composite material reached 1.253 W·m−1·K−1 when the alumina content was 69.6 wt%. This facile method is expected to be applied to the preparation of high-performance thermal interface materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ren, L.; Li, Q.; Lu, J.; Zeng, X.; Sun, R.; Wu, J.; Xu, J. B.; Wong, C. P. Enhanced thermal conductivity for Ag-deposited alumina sphere/epoxy resin composites through manipulating interfacial thermal resistance. Compos. Part A: Appl. Sci. Manufact. 2018, 107, 561–569.

    Article  CAS  Google Scholar 

  2. Shen, B.; Zhai, W.; Zheng, W. Ultrathin flexible graphene film: an excellent thermal conducting material with efficient EMI shielding. Adv. Funct. Mater. 2014, 24, 4542–4548.

    Article  CAS  Google Scholar 

  3. Mehra, N.; Mu, L.; Ji, T.; Yang, X.; Kong, J.; Gu, J.; Zhu, J. Thermal transport in polymeric materials and across composite interfaces. Appl. Mater. Today 2018, 12, 92–130.

    Article  Google Scholar 

  4. Prasher, R. Thermal interface materials: historical perspective, status, and future directions. Proc. IEEE 2006, 94, 1571–1586.

    Article  CAS  Google Scholar 

  5. Hansson, J.; Nilsson, T. M.; Ye, L.; Liu, J. Novel nanostructured thermal interface materials: a review. Int. Mater. Rev. 2018, 63, 22–45.

    Article  CAS  Google Scholar 

  6. Razeeb, K. M.; Dalton, E.; Cross, G. L. W.; Robinson, A. J. Present and future thermal interface materials for electronic devices. Int. Mater. Rev. 2018, 63, 1–21.

    Article  CAS  Google Scholar 

  7. Li, J.; Zhao, X.; Wu, W.; Ji, X.; Lu, Y.; Zhang, L. Bubble-templated rGO-graphene nanoplatelet foams encapsulated in silicon rubber for electromagnetic interference shielding and high thermal conductivity. Chem. Eng. J. 2021, 415, 129054.

    Article  CAS  Google Scholar 

  8. Wang, R.; Cheng, H.; Gong, Y.; Wang, F.; Ding, X.; Hu, R.; Zhang, X.; He, J.; Tian, X. Highly thermally conductive polymer composite originated from assembly of boron nitride at an oil-water interface. ACS Appl. Mater. Interfaces 2019, 11, 42818–42826.

    Article  CAS  Google Scholar 

  9. Leung, S. N. Thermally conductive polymer composites and nanocomposites: processing-structure-property relationships. Compos. Part B: Eng. 2018, 150, 78–92.

    Article  CAS  Google Scholar 

  10. Li, J.; Li, F.; Zhao, X.; Zhang, W.; Li, S.; Lu, Y.; Zhang, L. Jelly-Inspired Construction of the Three-dimensional interconnected BN network for lightweight, thermally conductive, and electrically insulating rubber composites. ACS Appl. Electron. Mater. 2020, 2, 1661–1669.

    Article  CAS  Google Scholar 

  11. Hu, J.; Huang, Y.; Yao, Y.; Pan, G.; Sun, J.; Zeng, X.; Sun, R.; Xu, J. B.; Song, B.; Wong, C. P. Polymer composite with improved thermal conductivity by constructing a hierarchically ordered three-dimensional interconnected network of BN. ACS Appl. Mater. Interfaces 2017, 9, 13544–13553.

    Article  CAS  Google Scholar 

  12. Akishin, G.; Turnaev, S.; Vaispapir, V. Y.; Gorbunova, M.; Makurin, Y. N.; Kiiko, V.; Ivanovskii, A. Thermal conductivity of beryllium oxide ceramic. Refractor. Indust. Ceramics 2009, 50, 465–468.

    Article  CAS  Google Scholar 

  13. Kholmanov, I.; Kim, J.; Ou, E.; Ruoff, R. S.; Shi, L. Continuous carbon nanotube-ultrathin graphite hybrid foams for increased thermal conductivity and suppressed subcooling in composite phase change materials. ACS Nano 2015, 9, 11699–11707.

    Article  CAS  Google Scholar 

  14. Fan, Z.; Gong, F.; Nguyen, S. T.; Duong, H. M. Advanced multifunctional graphene aerogel-poly(methyl methacrylate) composites: experiments and modeling. Carbon 2015, 81, 396–404.

    Article  CAS  Google Scholar 

  15. Liu, Z.; Chen, Y.; Li, Y.; Dai, W.; Yan, Q.; Alam, F. E.; Du, S.; Wang, Z.; Nishimura, K.; Jiang, N. Graphene foam-embedded epoxy composites with significant thermal conductivity enhancement. Nanoscale 2019, 11, 17600–17606.

    Article  CAS  Google Scholar 

  16. Zeng, X.; Yao, Y.; Gong, Z.; Wang, F.; Sun, R.; Xu, J.; Wong, C. P. Ice-templated assembly strategy to construct 3D boron nitride nanosheet networks in polymer composites for thermal conductivity improvement. Small 2015, 11, 6205–6213.

    Article  CAS  Google Scholar 

  17. Li, J.; Zhao, X.; Zhang, Z.; Xian, Y.; Lin, Y.; Ji, X.; Lu, Y.; Zhang, L. Construction of interconnected Al2O3 doped rGO network in natural rubber nanocomposites to achieve significant thermal conductivity and mechanical strength enhancement. Compos. Sci. Technol. 2020, 186, 107930.

    Article  CAS  Google Scholar 

  18. Li, J.; Zhao, X.; Wu, W.; Zhang, Z.; Xian, Y.; Lin, Y.; Lu, Y.; Zhang, L. Advanced flexible rGO-BN natural rubber films with high thermal conductivity for improved thermal management capability. Carbon 2020, 162, 46–55.

    Article  CAS  Google Scholar 

  19. Song, J.; Wu, L.; Zhang, Y. Thermal conductivity enhancement of alumina/silicone rubber composites through constructing a thermally conductive 3D framework. Polym. Bull. 2020, 77.4, 2139–2153.

    Article  Google Scholar 

  20. Kim, H.; Lee, S.; Han, Y.; Park, J. Control of pore size in ceramic foams: influence of surfactant concentration. Mater. Chem. Phys. 2009, 113, 441–444.

    Article  CAS  Google Scholar 

  21. Han, Y.; Li, C.; Bian, C.; Li, S.; Wang, C. A. Porous anorthite ceramics with ultra-low thermal conductivity. J. Eur. Ceramic Soc. 2013, 33, 2573–2578.

    Article  CAS  Google Scholar 

  22. Meng, Y.; Lyu, F.; Xu, X.; Zhang, L. Recent advances in chain conformation and bioactivities of triple-helix polysaccharides. Biomacromolecules 2020, 21, 1653–1677.

    Article  CAS  Google Scholar 

  23. Zhang, H.; Nishinari, K.; Williams, M. A.; Foster, T. J.; Norton, I. T. A molecular description of the gelation mechanism of curdlan. Inter. J. Biologic. Macromol. 2002, 30, 7–16.

    Article  Google Scholar 

  24. Zhang, R.; Edgar, K. J. Properties, chemistry, and applications of the bioactive polysaccharide curdlan. Biomacromolecules 2014, 15, 1079–1096.

    Article  CAS  Google Scholar 

  25. Binks, B. P. Particles as surfactants—similarities and differences. Current Opin. Colloid Interface Sci. 2002, 7, 21–41.

    Article  CAS  Google Scholar 

  26. Wang, Z.; Cheng, Y.; Wang, H.; Yang, M.; Shao, Y.; Chen, X.; Tanaka, T. Sandwiched epoxy-alumina composites with synergistically enhanced thermal conductivity and breakdown strength. J. Mater. Sci. 2017, 52, 4299–4308.

    Article  CAS  Google Scholar 

  27. Cheng, J.; Liu, T.; Zhang, J.; Wang, B.; Ying, J.; Liu, F.; Zhang, X. Influence of phase and morphology on thermal conductivity of alumina particle/silicone rubber composites. Appl. Phys. A 2014, 117, 1985–1992.

    Article  CAS  Google Scholar 

  28. Anithambigai, P.; Chakravarthii, M. D.; Mutharasu, D.; Huong, L.; Zahner, T.; Lacey, D.; Kamarulazizi, I. Potential thermally conductive alumina filled epoxy composite for thermal management of high power LEDs. J. Mater. Sci.: Mater. Electron. 2017, 28, 856–867.

    CAS  Google Scholar 

  29. Ouyang, Y.; Hou, G.; Bai, L.; Li, B.; Yuan, F. Constructing continuous networks by branched alumina for enhanced thermal conductivity of polymer composites. Compos. Sci. Technol. 2018, 165, 307–313.

    Article  CAS  Google Scholar 

  30. Zhou, W. Effect of coupling agents on the thermal conductivity of aluminum particle/epoxy resin composites. J. Mater. Sci. 2011, 46, 3883–3889.

    Article  CAS  Google Scholar 

  31. Wen, B.; Ma, L.; Zou, W.; Zheng, X. Enhanced thermal conductivity of poly(lactic acid)/alumina composite by synergistic effect of tuning crystallization of poly(lactic acid) crystallization and filler content. J. Mater. Sci.: Mater. Electron. 2020, 31, 6328–6338.

    CAS  Google Scholar 

  32. Wang, Z.; Yang, M.; Cheng, Y.; Liu, J.; Xiao, B.; Chen, S.; Huang, J.; Xie, Q.; Wu, G.; Wu, H. Dielectric properties and thermal conductivity of epoxy composites using quantum-sized silver decorated core/shell structured alumina/polydopamine. Compos. Part A: Appl. Sci. Manufact. 2019, 118, 302–311.

    Article  CAS  Google Scholar 

  33. Agari, Y.; Uno, T. Estimation on thermal conductivities of filled polymers. J. Appl. Polym. Sci. 1986, 32, 5705–5712.

    Article  CAS  Google Scholar 

  34. Wong, C.; Bollampally, R. S. Thermal conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging. J. Appl. Polym. Sci. 1999, 74, 3396–3403.

    Article  CAS  Google Scholar 

  35. Sim, L. C.; Ramanan, S.; Ismail, H.; Seetharamu, K.; Goh, T. Thermal characterization of Al2O3 and ZnO reinforced silicone rubber as thermal pads for heat dissipation purposes. Thermochimica Acta 2005, 430, 155–165.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to appreciate the financial support from the Joint Foundation of Ministry of Education for equipment pre-research (No. 6141A020222XX) and Post-doctoral Science Fund (No. 2020M680405).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Lai Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, SJ., Li, JC., Ji, PZ. et al. Bubble-templated Construction of Three-dimensional Ceramic Network for Enhanced Thermal Conductivity of Silicone Rubber Composites. Chin J Polym Sci 39, 789–795 (2021). https://doi.org/10.1007/s10118-021-2581-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-021-2581-4

Keywords

Navigation