Skip to main content

Advertisement

Log in

Facile and Large-scale Fabrication of Self-crimping Elastic Fibers for Large Strain Sensors

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Stretchable conductive fibers offer unparalleled advantages in the development of wearable strain sensors for smart textiles due to their excellent flexibility and weaveability. However, the practical applications of these fibers in wearable devices are hindered by either contradictory properties of conductive fibers (high stretchability versus high sensing stability), or lack of manufacturing scalability. Herein, we present a facile approach for highly stretchable self-crimping fiber strain sensors based on a polyether-ester (TPEE) elastomer matrix using a side-by-side bicomponent melt-spinning process involving two parallel but attached components with different shrinkage properties. The TPEE component serves as a highly elastic mechanical support layer within the bicomponent fibers, while the conductive component (E-TPEE) of carbon black (CB), multiwalled carbon nanotubes (MCNTs) and TPEE works as a strain-sensitive layer. In addition to the intrinsic elasticity of the matrix, the TPEE/E-TPEE bicomponent fibers present an excellent form of elasticity due to self-crimping. The self-crimping elongation of the fibers can provide a large deformation, and after the crimp disappears, the intrinsic elastic deformation is responsible for monitoring the strain sensing. The reliable strain sensing range of the TPEE/E-TPEE composite fibers was 160%–270% and could be regulated by adjusting the crimp structure. More importantly, the TPEE/E-TPEE fibers had a diameter of 30–40 µm and tenacity of 40–50 MPa, showing the necessary practicality. This work introduces new possibilities for fiber strain sensors produced in standard industrial spinning machines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amjadi, M.; Kyung, K. U.; Park, I.; Sitti, M. Stretchable, skinmountable, and wearable strain sensors and their potential applications: a review. Adv. Funct. Mater. 2016, 26, 1678–1698.

    Article  CAS  Google Scholar 

  2. Cao, Z.; Wang, R.; He, T.; Xu, F.; Sun, J. Intefaace-conrrolled conductive fibers for wearable strain sensors and stretchable conducting wires. ACS Appl. Mater. Interfaces 2018, 10, 14087–14096.

    Article  CAS  Google Scholar 

  3. Liu, Q.; Chen, J.; Li, Y. High-performance strain sensors with fish-scale-like graphene-sensing layers for full-range detection of human motions. ACS Nano 2016, 10, 7901–7906.

    Article  CAS  Google Scholar 

  4. Seyedin, S.; Zhang, P.; Naebe, M., Si, Q.; Razal, J. M. Textile strain sensors: a review of the fabrication technologies, performance evaluation and applications. Mater. Horiz. 2019, 6, 219–249.

    Article  CAS  Google Scholar 

  5. Kim, J.; Ji, S.; Jung, S.; Ryu, B. H.; Kim, H. S.; Lee, S. S.; Choi, Y.; Jeong, S. 3D printable composite dough for stretchable, ultrasensitive and body-patchable strain sensors. Nanoscale 2017, 9, 11035–11046.

    Article  CAS  Google Scholar 

  6. Ren, J.; Wang, C.; Zhang, X.; Carey, T.; Chen, K.; Yin, Y.; Torrisi, F. Environmentally-friendly conductive cotton fabric as flexible strain sensor based on hot press reduced graphene oxide. Carbon 2017, 111, 622–630.

    Article  CAS  Google Scholar 

  7. Roh, E.; Hwang, B.; Kim, D.; Kim, B. Y. Stretchable, transparent, ultrasensitive, and patchable strain sensor for human-machine interfaces comprising a nanohybrid of carbon nanotubes and conductive elastomers. ACS Nano 2015, 9, 6252–6261.

    Article  CAS  Google Scholar 

  8. Cheng, Y.; Wang, R.; Sun, J.; Gao, L. A stretchable and highly sensitive graphene-based fiber for sensing tensile strain, bending, and torsion. Adv. Mater. 2015, 27, 7365–7371.

    Article  CAS  Google Scholar 

  9. Jeong, Y. R.; Park, H.; Jin, S. W.; Hong, S. Y.; Lee, S. S.; Ha, J. S. Highly stretchable and sensitive strain sensors using fragmentized graphene foam. Adv. Funct. Mater. 2015, 25, 4228–4236.

    Article  CAS  Google Scholar 

  10. Pang, C.; Lee, G.; Kim, T.; Kim, S. M.; Kim, H. N.; Ahn, S. H.; Suh, K. Y. A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibers. Nat. Mater. 2012, 11, 795–801.

    Article  CAS  Google Scholar 

  11. Foroughi, J.; Spinks, G. M.; Aziz, S.; Mirabedini, A.; Jeiranikhameneh, A.; Wallace, G. G.; Kozlov, M. E.; Baughman, R. H. Knitted carbon-nanotube-sheath/spandex-core elastomeric yarns for artificial muscles and strain sensing. ACS Nano 2016, 10, 9129–9135.

    Article  CAS  Google Scholar 

  12. Seyedin, S.; Razal, J. M.; Innis, P. C.; Jeiranikhameneh, A.; Beirne, S.; Wallace, G. G. Knitted strain sensor textiles of highly conductive all-polymeric fibers. ACS Appl. Mater. Interfaces 2015, 7, 21150–21158.

    Article  CAS  Google Scholar 

  13. Cai, G.; Yang, M.; Xu, Z.; Liu, J.; Tang, B.; Wang, X. Flexible and wearable strain sensing fabrics. Chem. Eng. J. 2017, 325, 396–403.

    Article  CAS  Google Scholar 

  14. Tao, L.; Wang, D.; Tian, H.; Ju, Z. Y.; Pang, Y.; Chen, Y. Q.; Yang, Y.; Ren, T. L. Self-adapted and tunable graphene strain sensors for detecting both subtle and large human motions. Nanoscale 2017, 9, 8266–8273.

    Article  CAS  Google Scholar 

  15. Jiang, S.; Zhang, H.; Song, S.; Ma, Y.; Li, J. Highly stretchable conductive fibers from few-walled carbon nanotubes coated on poly(m-phenylene isophthalamide) polymer core/shell structures. ACS Nano 2015, 9, 10252–10257.

    Article  CAS  Google Scholar 

  16. Liu, H.; Li, Q.; Zhang, S.; Rui, Y.; Liu, X.; He, Y.; Dai, K.; Shan, C.; Jiang, G.; Liu, C. Electrically conductive polymer composites for smart flexible strain sensors: a critical review. J. Mater. Chem. C 2018, 6, 12121–12141.

    Article  CAS  Google Scholar 

  17. Amjadi, M.; Pichitpajongkit, A.; Lee, S.; Ryu, S.; Park, I. Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS Nano 2014, 8, 5154–5163.

    Article  CAS  Google Scholar 

  18. Cho, D.; Park, J.; Kim, J.; Kim, T.; Kim, J.; Park, I.; Jeon, S. Three-dimensional continuous conductive nanostructure for highly sensitive and stretchable strain sensor. ACS Appl. Mater. Interfaces 2017, 9, 17369–17378.

    Article  CAS  Google Scholar 

  19. Li, J.; Zhao, S.; Zeng, X.; Huang, W.; Wong, C. P. Highly stretchable and sensitive strain sensor based on facilely prepared three-dimensional graphene foam composite. ACS Appl. Mater. Interfaces 2016, 8, 18954–18961.

    Article  CAS  Google Scholar 

  20. Seyedin, S.; Razal, J. M.; Innis, P. C.; Wallace, G. G. A facile approach to spinning multifunctional conductive elastomer fibres with nanocarbon fillers. Smart Mater. Struct. 2016, 25, 035015–035024.

    Article  Google Scholar 

  21. Granero, A. J.; Wagner, P.; Wagner, K.; Razal, J. M.; Panhuis, M. I. H. Highly stretchable conducting SIBS-P3HT fibers. Adv. Funct. Mater. 2011, 21, 955–962.

    Article  CAS  Google Scholar 

  22. Lee, S.; Shin, S.; Lee, S.; Seo, J.; Lee, J.; Son, S.; Cho, H. J.; Algadi, H.; Al-Sayari, S.; Kim, D. E.; Lee, T. Ag nanowire reinforced highly stretchable conductive fibers for wearable electronics. Adv. Funct. Mater. 2015, 25, 3114–3121.

    Article  CAS  Google Scholar 

  23. Seyedin, M. Z.; Razal, J. M. Innis, P. C.; Jalili, R.; Wallace, G. G. Achieving outstanding mechanical performance in reinforced elastomeric composite fibers using large sheets of graphene oxide. Adv. Funct. Mater. 2015, 25, 94–104.

    Article  CAS  Google Scholar 

  24. He, Z.; Byun, J.; Zhou, G.; Park, B. J.; Kim, T. H.; Lee, S. B.; Yi, J. W.; Um, M. K.; Chou, T. W. Effect of MWCNT content on the mechanical and strain-sensing performance of Thermoplastic Polyurethane composite fibers. Carbon 2019, 146, 701–708.

    Article  CAS  Google Scholar 

  25. Wang, X.; Meng, S.; Tebyetekerwa, M.; Li, Y.; Pionteck, J.; Sun, B.; Qin, Z.; Zhu, M. Highly sensitive and stretchable piezoresistive strain sensor based on conductive poly(styrene-butadiene-styrene)/few layer graphene composite fiber. Compos. Part A-Appl. Sci. Manuf. 2018, 105, 291–299.

    Article  CAS  Google Scholar 

  26. Bautista-Quijano, J. R.; Pötschke, P.; Brünig, H.; Heinrich, G. Strain sensing, electrical and mechanical properties of polycarbonate/multiwall carbon nanotube monofilament fibers fabricated by melt spinning. Polymer 2016, 82, 181–189.

    Article  CAS  Google Scholar 

  27. Seyedin, S.; Uzun, S.; Levitt, A.; Anasori, B.; Dion, G.; Gogotsi, Y.; Razal, J. M. MXene composite and coaxial fibers with high stretchability and conductivity for wearable strain sensing textiles. Adv. Funct. Mater. 2020, 30, 1910504.

    Article  CAS  Google Scholar 

  28. Wang, J. P.; Xue, P.; Tao, X. M. Strain sensing behavior of electrically conductive fibers under large deformation. Mat. Sci. Eng. A-Struct. 2011, 528, 2863–2869.

    Article  Google Scholar 

  29. Zhang, M.; Wang, C.; Wang, Q.; Jian, M.; Zhang, Y. Sheath-core graphite/silk fiber made by dry-meyer-rod-coating for wearable strain sensors. ACS. Appl. Mater. Interfaces 2016, 8, 20894–20899.

    Article  CAS  Google Scholar 

  30. Liao, X.; Liao, Q.; Zhang, Z.; Yan, X.; Liang, Q.; Wang, Q.; Li, M.; Zhang, Y. A highly stretchable Zno@fiber-based multifunctional nanosensor for strain/temperature/UV detection. Adv. Funct. Mater. 2016, 26, 3074–3081.

    Article  CAS  Google Scholar 

  31. Liu, Z.; Qi, D.; Hu, G.; Wang, H.; Jiang, Y.; Chen, G.; Luo, Y.; Loh, X. J.; Liedberg, B.; Chen, X. Surface strain redistribution on structured microfibers to enhance sensitivity of fiber-shaped stretchable strain sensors. Adv. Mater. 2018, 30, 1704229.

    Article  Google Scholar 

  32. Zhong, W.; Liu, C.; Xiang, C.; Jin, Y.; Li, M.; Liu, K.; Liu, Q.; Wang, Y.; Sun, G. Wang, D. Continuously producible ultrasensitive wearable strain sensor assembled with three-dimensional interpenetrating AgNW/POE nanofibrous composite yarn. ACS Appl. Mater. Interfaces 2017, 9, 42058–42066.

    Article  CAS  Google Scholar 

  33. Liu, Z. F.; Fang, S. Moura, F. A.; Ding, J. N.; Di, J.; Zhang, M.; Lepó, X.; Galvão, D. S.; Haines, C. S.; Yuan, N. Y.; Yin, S. G.; Lee, D. W.; Wang, R.; Wang, H. Y.; Lv, W.; Dong, C.; Zhang, R. C.; Chen, M. J.; Yin, Q.; Chong, Y. T.; Zhang, R.; Wang, X.; Lima, M. D.; Ovalle-Robles, R.; Qian, D.; Lu, H.; Baughman, R. H. Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles. Science 2015, 349, 400–404.

    Article  CAS  Google Scholar 

  34. Li, Z.; Luo, G.; Wei, F.; Huang, Y. Microstructure of carbon nanotubes/PET conductive composites fibers and their properties. Compos. Sci. Technol. 2006, 66, 1022–1029.

    Article  CAS  Google Scholar 

  35. Hufenus, R.; Gooneie, A.; Sebastian, T.; Simonetti, P.; Geiger, A.; Parida, D.; Bender, K.; Schäch, G.; Clemens, F. Antistatic fibers for high-visibility workwear: challenges of melt-spinning industrial fibers. Materials 2020, 13, 2645.

    Article  CAS  Google Scholar 

  36. Rwei, S., Lin, Y. T., Su, Y. Y. Study of self-crimp polyester fibers. Polym. Eng. Sci. 2005, 45, 838–845.

    Article  CAS  Google Scholar 

  37. Luo, J.; Wang, F.; Xu, B. Factors affecting crimp configuration of PTT/PET bi-component filaments. Text Res. J. 2011, 81, 538–544.

    Article  CAS  Google Scholar 

  38. Oh, T. H. Effects of spinning and drawing conditions on the crimp contraction of side-by-side poly(trimethylene terephthalate) bicomponent fibers. J. Appl. Polym. Sci. 2006, 102, 1322–1327.

    Article  CAS  Google Scholar 

  39. Denton, M. J. The crimp curvature of bicomponent fibers. J. Text. I. 1982, 73, 253–263.

    Article  Google Scholar 

  40. Abbasi, M.; Kotek, R. Effects of drawing process on crimp formation-ability of side-by-side bicomponent filament yarns produced from recycled, fiber-grade and bottle-grade PET. J. Text. I. 2019, 110, 1439–1444.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Prospective Applied Basic Research Program of Suzhou City (No. SYG202041), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 19KJB540004), Jiangsu Postdoctoral Science Foundation (No. 2020Z159) and China Postdoctoral Science Foundation (No. 2017M620125).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin-Chao Yu, Yu-Mei Zhang or Zhi-Juan Pan.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, JC., Chen, K., Ji, H. et al. Facile and Large-scale Fabrication of Self-crimping Elastic Fibers for Large Strain Sensors. Chin J Polym Sci 39, 914–924 (2021). https://doi.org/10.1007/s10118-021-2560-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-021-2560-1

Keywords

Navigation