Skip to main content
Log in

On the Asymptotic Uniformity of the Quantization Error for Moran Measures on ℝ1

  • Published:
Acta Mathematica Sinica, English Series Aims and scope Submit manuscript

Abstract

Let E be a Moran set on ℝ1 associated with a bounded closed interval J and two sequences \((n_k)_{k=1}^\infty\) and \((\mathcal{C}_k=(c_{k,j})_{j=1}^{n_k})_{k\geq1}\). Let µ be the Moran measure on E associated with a sequence \((\mathcal{P}_k)_{k\geq1}\) of positive probability vectors with \((\mathcal{P}_k)=(p_{k,j})_{j=1}^{n_k}\), k ≥ 1. We assume that

$$\begin{array}{*{20}{c}} {\mathop {\inf }\limits_{k \geqslant 1} \mathop {\min }\limits_{1 \leqslant j \leqslant {n_k}} {c_{k,j}} > 0,}&{\mathop {\inf }\limits_{k \geqslant 1} \mathop {\min }\limits_{1 \leqslant j \leqslant {n_k}} {p_{k,j}} > 0.} \end{array}$$

.

For every n ≥ 1, let αn be an n optimal set in the quantization for µ of order r ∈ (0, ∞) and \(\{P_a(\alpha_n)\}_{a\in{\alpha_n}}\) an arbitrary Voronoi partition with respect to αn. We write

$$\begin{array}{c}I_a(\alpha, \mu):=\int_{P_a(\alpha_n)}d(x, \alpha_n)^rd\mu(x), \;\;a\in\alpha_n;\\{\underline{J}(\alpha_n, \mu) := \mathop {\min }\limits_{a\in\alpha_n} I_a(\alpha, \mu)}, \;\;\overline{J}(\alpha_n, \mu) := \mathop {\max }\limits_{a\in\alpha_n}I_a(\alpha, \mu).\end{array}$$

We show that \(\underline{J}(\alpha_n, \mu)\), \(\overline{J}(\alpha_n, \mu)\) and \({\rm{e}}_{n,r}^r(\mu)-{\rm{e}}_{n+1,r}^r(\mu)\) are of the same order as \(\frac{1}{n}{\rm{e}}_{n,r}^r(\mu)\), where \({\rm{e}}_{n,r}^r(\mu):=\int d(x, \alpha_n)^rd\mu(x)\) is the nth quantization error for µ of order r. In particular, for the class of Moran measures on ℝ1, our result shows that a weaker version of Gersho’s conjecture holds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bucklew, J. A., Wise, G. L.: Multidimensional asymptotic quantization with rth power distortion measures. IEEE Trans. Inform. Theory, 28, 239–247 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cawley, R., Mauldin, R. D.: Multifractal decompositions of Moran fractals. Adv. Math., 92, 196–236 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dai, M., Tan, X.: Quantization dimension of random self-similar measures. J. Math. Anal. Appl., 362, 471–475 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gersho, A.: Asymptotically optimal block quantization. IEEE Trans. Inform. Theory, 25, 373–380 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  5. Graf, S., Luschgy, H.: Foundations of quantization for probability dributions. Lecture Notes in Math., Vol. 1730, Springer-Verlag, 2000

    Google Scholar 

  6. Graf, S., Luschgy, H.: Asyptotics of the quantization error for self-similar probabilities. Real Anal. Exchange, 26, 795–810 (2001)

    MATH  Google Scholar 

  7. Graf, S., Luschgy, H.: Quantization for probabilitiy measures with respect to the geometric mean error. Math. Proc. Camb. Phil. Soc., 136, 687–717 (2004)

    Article  MATH  Google Scholar 

  8. Graf, S., Luschgy, H., Pagès, G.: Distortion mismatch in the quantization of probability measures. ESAIM Probability and Statistics, 12, 127–153 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Graf, S., Luschgy, H., Pagès, G.: The local quantization behavior of absolutely continuous probabilities. Ann. Probab., 40, 1795–1828 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gray, R., Neuhoff, D.: Quantization. IEEE Trans. Inform. Theory, 44, 2325–2383 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gruber, P. M.: Optimum quantization and its applications. Adv. Math., 186, 456–497 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hutchinson, J. E.: Fractals and self-similarity. Indiana Univ. Math. J., 30, 713–747 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kesseböhmer, M., Zhu, S.: Some recent developments in quantization of fractal measures, in: Fractal Geometry and Stochastics V, Birkhäuser, Cham, 2015, 105–120

    Chapter  Google Scholar 

  14. Kesseböhmer, M., Zhu, S.: On the quantization for self-affine measures on Bedford–McMullen carpets. Math. Z., 283, 39–58 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kreitmeier, W.: Asymptotic optimality of scalar Gersho quantizers. Constructive Approximation, 38, 365–396 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, J., Wu, M.: Pointwise dimensions of general Moran measures with open set condition. Science China Math., 54, 699–710 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lindsay, L. J., Mauldin, R. D.: Quantization dimension for conformal iterated function systems. Nonlinearity, 15, 189–199 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mihailescu, E., Roychowdhury, M. K.: Quantization coefficients in infinite systems. Kyoto J. Math., 55, 857–873 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Moran, P. A. P.: Additive functions of intervals and Hausdorff measure. Math. Proc. Camb. Philos. Soc., 42, 15–23 (1946)

    Article  MathSciNet  MATH  Google Scholar 

  20. Pagès, G.: A space quantization method for numerical integration. J. Comput. Appl. Math., 89, 1–38 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pötzelberger, K.: The quantization dimension of distributions. Math. Proc. Camb. Phil. Soc., 131, 507–519 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wen, Z. Y.: Moran sets and Moran classes. Chinese Science Bulletin, 46, 1849–1856 (2001)

    Article  MathSciNet  Google Scholar 

  23. Zador, P. L.: Development and evaluation of procedures for quantizing multivariate dributions. PhD Thesis, Stanford University, 1964

    Google Scholar 

  24. Zhu, S.: Asymptotic uniformity of the quantization error of self-similar measures. Math. Z., 267, 915–929 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhu, S.: Asymptotic order of the quantization error for a class of self-affine measures. Proc. Amer. Math. Soc., 146, 637–651 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhu, S.: Asymptotic local uniformity of the quantization error for Ahlfors—David probability measures. arXiv preprint arXiv:1708.07657 (2017)

    Google Scholar 

Download references

Acknowledgements

The author thanks the referee for some helpful comments which have led to significant improvements of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to San Guo Zhu.

Additional information

The author is supported by National Natural Science Foundation of China (Grant No. 11571144)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, S.G. On the Asymptotic Uniformity of the Quantization Error for Moran Measures on ℝ1. Acta. Math. Sin.-English Ser. 35, 1520–1540 (2019). https://doi.org/10.1007/s10114-019-8117-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-019-8117-y

Keywords

MR(2010) Subject Classification

Navigation