Skip to main content
Log in

On the Fourier Orthonormal Bases of a Class of Moran Measures on ℝ2

  • Published:
Analysis Mathematica Aims and scope Submit manuscript

Abstract

Let \({\mu _{\left\{{{R_i}} \right\},\left\{{{{\cal D}_i}} \right\}}}\) be the probability measure generated by the iterated function system (IFS): \(\left\{{{F_{{R_i},{{\cal D}_i}}}\left(x \right) = R_i^{- 1}\left({x + d} \right):d \in {{\cal D}_i}} \right\}_{i = 1}^\infty \), where \({R_i} = \rho \left({\matrix{1 & {{d_i}} \cr 0 & 1 \cr}} \right)\) is an expanding matrix with 1 < ρ ∈ ℝ, di ∈ ℤ, and \({{\cal D}_i} = \left\{{\left({\matrix{0 \cr 0 \cr}} \right),\left({\matrix{1 \cr 0 \cr}} \right),\left({\matrix{{{k_i}} \cr 1 \cr}} \right)} \right\}\) with ki ∈ ℤ, and supi∈ℕ{∣di∣, ∣ki} < ∞. In this paper, we consider the spectral properties of \({\mu _{\left\{{{R_i}} \right\},\left\{{{{\cal D}_i}} \right\}}}\), we show that \({\mu _{\left\{{{R_i}} \right\},\left\{{{{\cal D}_i}} \right\}}}\) is a spectral measure, i.e., there exists a countable set Λ ⊆ ℝ2, such that E(Λ) ≔ {e2πix,λ, λ ∈ Λ} forms an orthonormal basis for \({L^2}\left({{\mu _{\left\{{{R_i}} \right\},\left\{{{{\cal D}_i}} \right\}}}} \right)\), if and only if ρ = 3k for some k ∈ ℕ. Furthermore, we also provide an equivalent characterization for the maximal bi-zero set for \({\mu _{\left\{{{R_i}} \right\},\left\{{{{\cal D}_i}} \right\}}}\) by defining a mixed tree mapping for it. And we also obtain some results associated with the Sierpinski-type measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.-X. An, X.-Y. Fu and C.-K. Lai, On spectral Cantor—Moran measures and a variant of Bourgain’s sum of sine problem, Adv. Math., 349 (2019), 84–124.

    Article  MathSciNet  MATH  Google Scholar 

  2. L.-X. An and X.-G. He, A class of spectral Moran measures J. Funct. Anal., 266 (2014), 343–354.

    Article  MathSciNet  MATH  Google Scholar 

  3. L.-X. An, X.-G. He and K. S. Lau, Spectrality of a class of infinite convolutions Adv. Math., 283 (2015), 362–376.

    Article  MathSciNet  MATH  Google Scholar 

  4. M.-L. Chen and Z.-H. Yan, On the spectrality of self-affine measures with four digits on ℝ2, Internat. J. Math., 32 (2021), 2150004, 24 pp.

    Article  MathSciNet  MATH  Google Scholar 

  5. X.-R. Dai, When does a Bernoulli convolution admit a spectrum?, Adv. Math., 231 (2012), 1681–1693.

    Article  MathSciNet  MATH  Google Scholar 

  6. X.-R. Dai, Spectra of Cantor measures, Math. Ann., 366 (2016), 1621–1647.

    Article  MathSciNet  MATH  Google Scholar 

  7. X.-R. Dai, X.-Y. Fu and Z.-H. Yan, Spectrality of self-affine Sierpinski-type measures on ℝ2, Appl. Comput. Harmon. Anal., 52 (2021), 63–81.

    Article  MathSciNet  MATH  Google Scholar 

  8. X.-R. Dai, X.-G. He and C.-K. Lai, Spectral property of Cantor measures with consecutive digits, Adv. Math., 242 (2013), 187–208.

    Article  MathSciNet  MATH  Google Scholar 

  9. X.-R. Dai, X.-G. He and K.-S. Lau, On spectral N-Bernoulli measures, Adv. Math., 259 (2014), 511–531.

    Article  MathSciNet  MATH  Google Scholar 

  10. X.-R. Dai and Q. Y. Sun, Spectral measures with arbitrary Hausdorff dimensions, J. Funct. Anal., 268 (2015), 2464–2477.

    Article  MathSciNet  MATH  Google Scholar 

  11. Q.-R. Deng and K.-S. Lau, Sierpinski-type spectral self-similar measures J. Funct. Anal., 269 (2015), 1310–1326.

    Article  MathSciNet  MATH  Google Scholar 

  12. D. E. Dutkay, D. G. Han and Q. Y. Sun, On the spectra of a Cantor measure, Adv. Math., 221 (2009), 251–276.

    Article  MathSciNet  MATH  Google Scholar 

  13. D. E. Dutkay, D. G. Han, Q. Y. Sun and E. Weber, On the Beurling dimension of exponential frames, Adv. Math., 226 (2011), 285–297.

    Article  MathSciNet  MATH  Google Scholar 

  14. D. E. Dutkay, D. G. Han and Q. Y. Sun, Divergence of the mock and scrambled Fourier series on fractal measures, Trans. Amer. Math. Soc., 366 (2014), 2191–2208.

    Article  MathSciNet  MATH  Google Scholar 

  15. D. E. Dutkay, J. Haussermann, and C.-K. Lai, Hadamard triples generate self-affine spectral measures, Trans. Amer. Math. Soc., 371 (2019), 1439–1481.

    Article  MathSciNet  MATH  Google Scholar 

  16. D. E. Dutkay and P. Jorgensen, Analysis of orthogonality and of orbits in affine iterated function systems, Math. Z., 256 (2007), 801–823.

    Article  MathSciNet  MATH  Google Scholar 

  17. D. E. Dutkay and P. Jorgensen, Wavelets on fractals, Rev. Mat. Iberoam., 22 (2006), 131–180.

    Article  MathSciNet  MATH  Google Scholar 

  18. K. J. Falconer, Fractal Geometry, Mathematical Foundations and Applications, Wiley (New York, 1990).

    MATH  Google Scholar 

  19. A. H. Fan, S. L. Fan, L. M. Liao and R. X. Shi, Fuglede’s conjecture holds in ℚp, Math. Ann., 375 (2019), 315–341.

    Article  MathSciNet  MATH  Google Scholar 

  20. Y.-S. Fu, X.-G. He and Z.-X. Wen, Spectra of Bernoulli convolutions and random convolutions, J. Math. Pures Appl., 116 (2018), 105–131.

    Article  MathSciNet  MATH  Google Scholar 

  21. B. Fuglede, Commuting self-adjoint partial differential operators and a group theoretic problem, J. Funct. Anal., 16 (1974), 101–121.

    Article  MathSciNet  MATH  Google Scholar 

  22. R. Greenfeld and N. Lev, Fuglede’s spectral set conjecture for convex polytopes, Anal. PDE, 10 (2017), 1497–1538.

    Article  MathSciNet  MATH  Google Scholar 

  23. S. Grepstad and N. Lev, Multi-tiling and Riesz bases, Adv. Math., 252 (2014), 1–6.

    Article  MathSciNet  MATH  Google Scholar 

  24. L. He and X.-G. He, On the Fourier orthonormal bases of Cantor—Moran measures, J. Funct. Anal., 272 (2017), 1980–2004.

    Article  MathSciNet  MATH  Google Scholar 

  25. X.-G. He, C.-K. Lai and K.-S. Lau, Exponential spectra in L2(μ), Appl. Comput. Harmon. Anal., 34 (2013), 327–338.

    Article  MathSciNet  Google Scholar 

  26. T.-Y. Hu and K.-S. Lau, Spectral property of the Bernoulli convolutions Adv. Math., 219 (2008), 554–567.

    Article  MathSciNet  MATH  Google Scholar 

  27. J. Hutchinson, Fractals and Self-similarity, Indiana Univ. Math. J., 30 (1981), 713–747.

    Article  MathSciNet  MATH  Google Scholar 

  28. P. Jorgensen and S. Pedersen, Dense analytic subspaces in fractal L-spaces, J. Anal. Math., 75 (1998), 185–228.

    Article  MathSciNet  MATH  Google Scholar 

  29. M. Kolountzakis and M. Matolcsi, Tiles with no spectra, Forum Math., 18 (2006), 519–528.

    Article  MathSciNet  MATH  Google Scholar 

  30. I. Łaba and Y. Wang, On spectral Cantor Measures, J. Funct. Anal., 193 (2002), 409–420.

    Article  MathSciNet  MATH  Google Scholar 

  31. I. Łaba and Y. Wang, Some properties of spectral measures, Appl. Comput. Harmon. Anal., 20 (2006), 149–157.

    Article  MathSciNet  MATH  Google Scholar 

  32. H. Landau, Necessary density conditions for sampling and interpolation of certain entire functions, Acta Math., 117 (1967), 37–52.

    Article  MathSciNet  MATH  Google Scholar 

  33. J.-L. Li, On the μM,D-orthogonal exponentials, Nonlinear Anal., 73 (2010), 940–951.

    Article  MathSciNet  MATH  Google Scholar 

  34. Y. M. Liu and Y. Wang, The uniformity of non-uniform Gabor bases, Adv. Comput. Math., 18 (2003), 345–355.

    Article  MathSciNet  MATH  Google Scholar 

  35. M. Matolcsi, Fuglede’s conjecture fails in dimension 4, Proc. Amer. Math. Soc., 133 (2005), 3021–3026.

    Article  MathSciNet  MATH  Google Scholar 

  36. R. X. Shi, Spectrality of a class of Cantor—Moran measures, J. Funct. Anal., 276 (2019), 3767–3794.

    Article  MathSciNet  MATH  Google Scholar 

  37. R. S. Strichartz, Mock Fourier series and transforms associated with certain Cantor measures, J. Anal. Math., 81 (2000), 209–238.

    Article  MathSciNet  MATH  Google Scholar 

  38. R. S. Strichartz, Convergence of mock Fourier series, J. Anal. Math., 99 (2006), 333–353.

    Article  MathSciNet  MATH  Google Scholar 

  39. S. Nitzan, A. Olevskii and A. Ulanovskii, Exponential frames on unbounded sets, Proc. Amer. Math. Soc., 144 (2016), 109–118.

    Article  MathSciNet  MATH  Google Scholar 

  40. T. Tao, Fuglede’s conjecture is false in 5 and higher dimensions Math. Res. Lett., 11 (2004), 251–258.

    Article  MathSciNet  MATH  Google Scholar 

  41. A. Vince, Replicating tessellations, SIAM J. Discrete Math., 6 (1993), 501–521.

    Article  MathSciNet  MATH  Google Scholar 

  42. Z.-H. Yan, Spectral properties of a class of Moran measures, J. Math. Anal. Appl., 470 (2019), 375–387.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z.-H. Yan.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 11771457) and the Fundamental Research Funds for the Central Universities (No. 20lgpy143), and the Science and Technology Program of Guangzhou (No. 202002030369).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, ZH. On the Fourier Orthonormal Bases of a Class of Moran Measures on ℝ2. Anal Math 48, 861–893 (2022). https://doi.org/10.1007/s10476-022-0133-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10476-022-0133-y

Key words and phrases

Mathematics Subject Classification

Navigation