Skip to main content
Log in

Asymptotic uniformity of the quantization error for the Ahlfors-David probability measures

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

Let μ be an Ahlfors-David probability measure on ℝq; therefore, there exist some constants s0 > 0 and ϵ0, C1, C2 > 0 such that \({C_1}{\varepsilon ^{s_0}} \leqslant \mu \left( {B\left( {x,\varepsilon } \right)} \right) \leqslant {C_2}{\varepsilon ^{s_0}}\) for all ϵ ∈ (0, ϵ0) and x ∈ supp(μ). For n ⩾ 1, let αn be an n-optimal set for μ of order r; furthermore, let \(\left\{ {{P_a}\left( {{\alpha _n}} \right)} \right\}_{a \in {\alpha _n}}\) be an arbitrary Voronoi partition with respect to αn. The n-th quantization error en,r(μ) for μ of order r can be defined as ern,r (μ):= ∫ d(x,αn)r(x). We define \({I_a}\left( {{\alpha _n},\mu } \right):={\smallint _{{P_a}\left( {{\alpha _n}} \right)}}d{\left( {x,{\alpha _n}} \right)^r}d\mu \left( x \right)\), ααn, and prove that, the three quantities

$$\underline J \left( {{\alpha _n},\mu } \right) := \mathop {\min }\limits_{a \in {\alpha _n}} \,{I_a}\left( {{\alpha _n},\mu } \right),\,\,\,\,\,\,\,\,\,\,\overline J \left( {{\alpha _n},\mu } \right) := \mathop {\max }\limits_{a \in {\alpha _n}} \,{I_a}\left( {{\alpha _n},\mu } \right),\,\,\,\,\,\,\,\,\,\,\,e_{n,r}^r\left( \mu \right) - e_{n + 1,\,r}^r\left( \mu \right)$$

are of the same order as that of \(\frac{1} {n}e_{n,r}^r\left( \mu \right)\). Thus, our result exhibits that, a weak version of Gersho’s conjecture holds true for the Ahlfors-David probability measures on ℝq.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bucklew J A, Wise G L. Multidimensional asymptotic quantization theory with r-th power distortion measures. IEEE Trans Inform Theory, 1982, 28: 239–247

    Article  MathSciNet  Google Scholar 

  2. Fort J C, Pagès G. Asymptotics of optimal quantizers for some scalar distributions. J Comput Appl Math, 2002, 146: 253–275

    Article  MathSciNet  Google Scholar 

  3. Gersho A. Asymptotically optimal block quantization. IEEE Trans Inform Theory, 1979, 25: 373–380

    Article  MathSciNet  Google Scholar 

  4. Graf S, Luschgy H. Foundations of Quantization for Probability Distributions. Lecture Notes in Mathematics, vol. 1730. New York: Springer-Verlag, 2000

    Book  Google Scholar 

  5. Graf S, Luschgy H. The quantization dimension of self-similar probabilities. Math Nachr, 2002, 241: 103–109

    Article  MathSciNet  Google Scholar 

  6. Graf S, Luschgy H. Quantization for probability measures with respect to the geometric mean error. Math Proc Cambridge Philos Soc, 2004, 136: 687–717

    Article  MathSciNet  Google Scholar 

  7. Graf S, Luschgy H. The point density measure in the quantization of self-similar probabilities. Math Proc Cambridge Philos Soc, 2005, 138: 513–531

    Article  MathSciNet  Google Scholar 

  8. Graf S, Luschgy H, Pagès G. Distortion mismatch in the quantization of probability measures. ESAIM Probab Stat, 2008, 12: 127–153

    Article  MathSciNet  Google Scholar 

  9. Graf S, Luschgy H, Pagès G. The local quantization behavior of absolutely continuous probabilities. Ann Probab, 2012, 40: 1795–1828

    Article  MathSciNet  Google Scholar 

  10. Gray R, Neuhoff D. Quantization. IEEE Trans Inform Theory, 1998, 44: 2325–2383

    Article  MathSciNet  Google Scholar 

  11. Gruber P M. Optimum quantization and its applications. Adv Math, 2004, 186: 456–497

    Article  MathSciNet  Google Scholar 

  12. Kesseböhmer M, Zhu S. On the quantization for self-affine measures on Bedford-McMullen carpets. Math Z, 2016, 283: 39–58

    Article  MathSciNet  Google Scholar 

  13. Kreitmeier W. Optimal quantization for dyadic homogeneous Cantor distributions. Math Nachr, 2008, 281: 1307–1327

    Article  MathSciNet  Google Scholar 

  14. Lindsay L J, Mauldin R D. Quantization dimension for conformal iterated function systems. Nonlinearity, 2002, 15: 189–199

    Article  MathSciNet  Google Scholar 

  15. Mihailescu E, Roychowdhury M. Quantization coefficients in infinite systems. Kyoto J Math, 2015, 55: 857–873

    Article  MathSciNet  Google Scholar 

  16. Pagès G. A space quantization method for numerical integration. J Comput Appl Math, 1997, 89: 1–38

    Article  MathSciNet  Google Scholar 

  17. Pötzelberger K. The quantization dimension of distributions. Math Proc Cambridge Philos Soc, 2001, 131: 507–519

    Article  MathSciNet  Google Scholar 

  18. Zador P L. Development and evaluation of procedures for quantizing multivariate distributions. PhD Thesis. Stanford: Stanford University, 1964

    Google Scholar 

  19. Zhu S. Asymptotic uniformity of the quantization error of self-similar measures. Math Z, 2011, 267: 915–929

    Article  MathSciNet  Google Scholar 

  20. Zhu S. Asymptotic geometric mean error in the quantization for product measures on Moran sets. J Math Anal Appl, 2013, 403: 252–261

    Article  MathSciNet  Google Scholar 

  21. Zhu S. Asymptotic order of the quantization errors for a class of self-affine measures. Proc Amer Math Soc, 2018, 146: 637–651

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 11571144).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanguo Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, S. Asymptotic uniformity of the quantization error for the Ahlfors-David probability measures. Sci. China Math. 63, 1039–1056 (2020). https://doi.org/10.1007/s11425-017-9436-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-017-9436-4

Keywords

MSC(2010)

Navigation