Skip to main content

Advertisement

Log in

Shear bond strengths of bur or Er:YAG laser prepared dentine to composite resin with or without low-level laser conditioning: an in vitro study

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

This study aims to compare the different modes of cavity preparation while evaluating the effect of low-level laser therapy (LLLT) on dentine before bonding in terms of shear bond strength between composite resin and dentine. Fifty human molar teeth were mounted on acrylic blocks and dentine specimen were prepared after which they were randomized into four equal groups. Cavity preparation mode differed in respective groups. After etching, bonding; composite resin was placed and polymerized on the prepared dentine surfaces. The specimens were kept in an environment simulating oral cavity and then shear tested in a universal testing machine. The failure surfaces of the specimen teeth were subjected to SEM micrographic evaluation. The cavity prepared with diamond abrasive points had a higher shearing load at failure that was statistically significantly different from the ones prepared with laser. That with diamond abrasive points followed by LLLT of the cavity surface with Nd:YAG laser had a higher bond strength than the ones prepared with just Er:YAG laser and there was no statistically significant difference between these and the ones prepared with diamond abrasive points alone. SEM analysis of the failure mode in bur-cut dentine showed the presence of a hybrid layer at the interface. Surface conditioning of the same with Nd:YAG laser before etching suggested a recrystallisation of dentine due to the heat produced. Cavity preparation with Er:YAG laser leads to reduced shear bond strength to adhesive restorative materials when compared with that using burs and high-speed handpiece.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Poggio C, Chiesa M, Scribante A, Mekler J, Colombo M (2013) Microleakage in class II composite restorations with margins below the CEJ: in vitro evaluation of different restorative techniques. Med Oral Patol Oral Cir Bucal 18:e793–e798

    Article  PubMed  PubMed Central  Google Scholar 

  2. Franco EB, Gonzaga Lopes L, Lia Mondelli RF, da Silva e Souza MH, Pereira Lauris JR (2003) Effect of the cavity configuration factor on the marginal microleakage of esthetic restorative materials. Am J Dent 16:211–4

    PubMed  Google Scholar 

  3. Ceballos L, Osorio R, Toledano M, Marshall GW (2001) Microleakage of composite restorations after acid or Er-YAG laser cavity treatments. Dent Mater 17:340–346

    Article  CAS  PubMed  Google Scholar 

  4. Coluzzi DJ (2000) An overview of laser wavelengths used in dentistry. Dent Clin North Am 44:753–765

    Article  CAS  PubMed  Google Scholar 

  5. Özüdoğru S, Kahvecioğlu F, Tosun G, Gündoğdu Y, Kılıç HŞ (2021) Effect of femtosecond and ER:YAG laser systems on shear bond strength of enamel surface and morphological changes. Lasers Dent Sci 5:199–205

    Article  Google Scholar 

  6. Hibst R, Keller U (1989) Experimental studies of the application of the Er:YAG laser on dental hard substances: I. Measurement of the ablation rate. Lasers Surg Med 9:338–344

    Article  CAS  PubMed  Google Scholar 

  7. Apel C, Meister J, Schmitt N, Gräber H-G, Gutknecht N (2002) Calcium solubility of dental enamel following sub-ablative Er:YAG and Er:YSGG laser irradiation in vitro. Lasers Surg Med 30:337–341

    Article  CAS  PubMed  Google Scholar 

  8. Burkes EJ, Hoke J, Gomes E, Wolbarsht M (1992) Wet versus dry enamel ablation by Er:YAG laser. J Prosthet Dent 67:847–851

    Article  PubMed  Google Scholar 

  9. Ekworapoj P, Sidhu SK, McCabe JF (2007) Effect of different power parameters of Er, Cr:YSGG laser on human dentine. Lasers Med Sci 22:175–182

    Article  PubMed  Google Scholar 

  10. Bertrand M-F, Hessleyer D, Muller-Bolla M, Nammour S, Rocca J-P (2004) Scanning electron microscopic evaluation of resin-dentin interface after Er:YAG laser preparation. Lasers Surg Med 35:51–57

    Article  PubMed  Google Scholar 

  11. Delmé KIM, De Moor RJG (2007) Scanning electron microscopic evaluation of enamel and dentin surfaces after Er:YAG laser preparation and laser conditioning. Photomed Laser Surg 25:393–401

    Article  PubMed  Google Scholar 

  12. Visuri SR, Gilbert JL, Wright DD, Wigdor HA, Walsh JT (1996) Shear strength of composite bonded to Er:YAG laser-prepared dentin. J Dent Res 75:599–605

    Article  CAS  PubMed  Google Scholar 

  13. Saikaew P, Sattabanasuk V, Harnirattisai C, Chowdhury AFMA, Carvalho R, Sano H (2022) Role of the smear layer in adhesive dentistry and the clinical applications to improve bonding performance. Jpn Dent Sci Rev 58:59–66

    Article  PubMed  PubMed Central  Google Scholar 

  14. Pashley DH, Tay FR, Breschi L, Tjäderhane L, Carvalho RM, Carrilho M et al (2011) State of the art etch-and-rinse adhesives. Dent Mater 27:1–16

    Article  CAS  PubMed  Google Scholar 

  15. Goracci G, Mori G, Bazzucchi M, de Casa Martinis L (1995) Dentinal adhesive with composite restorations: a clinical and microstructural evaluation. Int J Prosthodont 8:548–56

    CAS  PubMed  Google Scholar 

  16. Prati C, Chersoni S, Mongiorgi R, Pashley DH (1998) Resin-infiltrated dentin layer formation of new bonding systems. Oper Dent 23:185–194

    CAS  PubMed  Google Scholar 

  17. Perdigão J, Ramose JC, Lambrechts P (1997) In vitro interfacial relationship between human dentin and one-bottle dental adhesives. Dent Mater 13:218–227

    Article  PubMed  Google Scholar 

  18. Martínez-Insua A, Da Silva Dominguez L, Rivera FG, Santana-Penín UA (2000) Differences in bonding to acid-etched or Er:YAG-laser-treated enamel and dentin surfaces. J Prosthet Dent 84:280–288

  19. D.D.S UK, Hibst R. Effects of Er:YAG laser on enamel bonding of composite materials. Lasers Orthop Dent Vet Med II [Internet]. SPIE; 1993 [cited 2023 Feb 17] 163–8. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/1880/0000/Effects-of-Er-YAG-laser-onenamel-bonding-of-composite/10.1117/12.148319.full

  20. De Munck J, Van Meerbeek B, Yudhira R, Lambrechts P, Vanherle G (2002) Micro-tensile bond strength of two adhesives to Erbium:YAG-lased vs. bur-cut enamel and dentin. Eur J Oral Sci 110:322–329

    Article  PubMed  Google Scholar 

  21. Lee B-S, Lin C-P, Hung Y-L, Lan W-H (2004) Structural changes of Er:YAG laser–irradiated human dentin. Photomed Laser Surg 22:330–334

    Article  PubMed  Google Scholar 

  22. Ying D, Chuah GK, Hsu C-YS (2004) Effect of Er:YAG laser and organic matrix on porosity changes in human enamel. J Dent 32:41–46

    Article  CAS  PubMed  Google Scholar 

  23. Zyman Z, Weng J, Liu X, Li X, Zhang X (1994) Phase and structural changes in hydroxyapatite coatings under heat treatment. Biomaterials 15:151–155

    Article  CAS  PubMed  Google Scholar 

  24. Gross KA, Berndt CC (1998) Thermal processing of hydroxyapatite for coating production. J Biomed Mater Res 39:580–587

    Article  CAS  PubMed  Google Scholar 

  25. Aminzadeh A, Shahabi S, Walsh LJ (1999) Raman spectroscopic studies of CO2 laser-irradiated human dental enamel. Spectrochim Acta A Mol Biomol Spectrosc 55:1303–1308

    Article  Google Scholar 

  26. Hossain M, Nakamura Y, Kimura Y, Yamada Y, Ito M, Matsumoto K (2000) Caries-preventive effect of Er:YAG laser irradiation with or without water mist. J Clin Laser Med Surg. Mary Ann Liebert Inc, publishers 18:61–65

    CAS  Google Scholar 

  27. Ceballos L, Toledano M, Osorio R, García-Godoy F, Flaitz C, Hicks J (2001) ER-YAG laser pretreatment effect on in vitro secondary caries formation around composite restorations. Am J Dent 14:46–49

    CAS  PubMed  Google Scholar 

  28. Delmé, Katleen I. M./Deman, Peter J./De Bruyne, Mieke A. A./De Moor, Roeland J.G (2006) Influence of different Er:YAG laser energies and frequencies on the surface morphology of dentin and enamel. J Oral Laser Appl 6:43–52 http://www.quintpub.com/journals/jola/abstract.php?article_id=9403#.ZAexE3ZBy3A

  29. Keller U, Hibst R (1989) Experimental studies of the application of the Er:YAG laser on dental hard substances: II. Light microscopic and SEM investigations. Lasers Surg Med 9:345–351

    Article  CAS  PubMed  Google Scholar 

  30. Tokonabe H, Kouji R, Watanabe H, Nakamura Y, Matsumoto K (1999) Morphological changes of human teeth with Er:YAG laser irradiation. J Clin Laser Med Surg 17:7–12

    Article  CAS  PubMed  Google Scholar 

  31. Kataumi M, Nakajima M, Yamada T, Tagami J (1998) Tensile bond strength and SEM evaluation of Er:YAG laser irradiated dentin using dentin adhesive. Dent Mater J 17:125–138

    Article  Google Scholar 

  32. Armengol V, Jean A, Rohanizadeh R, Hamel H (1999) Scanning electron microscopic analysis of diseased and healthy dental hard tissues after Er:YAG laser irradiation: In vitro study. J Endod 25:543–546

    Article  CAS  PubMed  Google Scholar 

  33. Dunn WJ, Davis JT, Bush AC (2005) Shear bond strength and SEM evaluation of composite bonded to Er:YAG laser-prepared dentin and enamel. Dent Mater 21:616–624

    Article  CAS  PubMed  Google Scholar 

  34. Ramos RP, Chimello DT, Chinelatti MA, Nonaka T, Pécora JD, Palma Dibb RG (2002) Effect of Er:YAG laser on bond strength to dentin of a self-etching primer and two single-bottle adhesive systems. Lasers Surg Med 31:164–170

    Article  PubMed  Google Scholar 

  35. Cernavin I (1995) A comparison of the effects of Nd:YAG and Ho:YAG laser irradiation on dentine and enamel. Aust Dent J 40:79–84

    Article  CAS  PubMed  Google Scholar 

  36. Lin C, Lee B, Lin F, Kok S, Lan W (2001) Phase, compositional, and morphological changes of human dentin after Nd:YAG laser treatment. J Endod 27:389–393

    Article  CAS  PubMed  Google Scholar 

  37. Tjäderhane L, Hietala E-L, Larmas M (1995) Mineral element analysis of carious and sound rat dentin by electron probe microanalyzer combined with back-scattered electron image. J Dent Res 74:1770–1774

    Article  PubMed  Google Scholar 

  38. Angker L, Nockolds C, Swain MV, Kilpatrick N (2004) Quantitative analysis of the mineral content of sound and carious primary dentine using BSE imaging. Arch Oral Biol 49:99–107

    Article  PubMed  Google Scholar 

  39. Marshall GW, Marshall SJ, Kinney JH, Balooch M (1997) The dentin substrate: structure and properties related to bonding. J Dent 25:441–458

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the valuable contribution of Mr. Anoop Kumar Raut, Lab-in-charge, Tech. Superintendent Mechanical Testing Lab., ACMS, IIT Kanpur, UP, India, for support with testing the samples and Mr. Kshitiz Majumdar, Assistant Engineer, Dept. of Pathology, King George’s Medical University, Lucknow, UP for their support with viewing the samples under SEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev Kumar Singh.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakya, V.K., Bhattacharjee, A., Singh, R.K. et al. Shear bond strengths of bur or Er:YAG laser prepared dentine to composite resin with or without low-level laser conditioning: an in vitro study. Lasers Med Sci 38, 161 (2023). https://doi.org/10.1007/s10103-023-03824-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10103-023-03824-z

Keywords

Navigation