Skip to main content
Log in

Near IR-plasmon enhanced guided fluorescence and thermal imaging of tissue subsurface target using ICG-labeled gold nanourchin and protein contrast agent: implication of stability

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract  

A dual-function nanocomposite agent (NCA) was prepared for deep tissue fluorescence and thermal imaging. The results showed that a combination of some agents such as gold nanourchins (GNU) and indocyanine green (ICG) can have spectral overlapping and hence some peak broadening. Despite 83% and 92% loss of NCA fluorescence after tissue layers L1 and L2, respectively, there was sufficient signal detected for imaging the target buried under the tissue. No fluorescence was detected after L3. A significant contribution was made by GNU for both the fluorescence signal due to the plasmon-enhanced fluorescence (PEF) effect and the thermal heating because of local surface plasmon resonance (LSPR) due to its sharp tips. In the first case, PEF occurred within the first 40 s then followed by a gradual quenching by 23% in 4 min and 72% in the following 6 min. During the second quenching time, the emission signal was blue shifted by 10 nm. Of the three samples, sample 2 (S2) indicated the highest temperature rise ≈ 60 °C in 50 s; sample 3 (S3) produced the lowest temperature of ≈ 33 °C in 250 s after the first layer, thus showing BSA acting as a heat sink. Both the heating and cooling time are determined by the thermal properties of the material such as conductivity and diffusivity. Finally, despite the advantages of PEF, the photostability and quenching rate of a dye molecule must be considered in a dynamic detection monitoring system to account and compensate for the effect of contrast agent quality variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Feme C (2005) Role of imaging to choose treatment. Cancer Imaging 5:S113–S119. https://doi.org/10.1102/1470-7330.2005.0032

    Article  Google Scholar 

  2. Lehman CD, Isaacs C, Schnall M, Pisano E, Ascher S (2007) Cancer yields of mammography, MR, and US in high-risk women: prospective multi-institution breast cancer screening study. Radiology 244:381–388. https://doi.org/10.1148/radiol.2442060461

    Article  PubMed  Google Scholar 

  3. Brindle K (2008) New approaches to imaging tumour responses to treatment. Nature Rev Cancer 8:94–107. https://doi.org/10.1038/nrc2289

    Article  CAS  Google Scholar 

  4. Yang M, Baranov E, Jiang P (2000) Whole-body optical imaging of green protein-expressing tumors and metastases. Proc Natl Acd Sci 97:1206–1211. https://doi.org/10.1073/pnas.97.3.1206

    Article  CAS  Google Scholar 

  5. Ntziachristos V, Ripoll J, Weissleder R (2002) Would near-infrared fluorescence signals propagate through large human organs for clinical studies. Opt Lett 27:527–529. https://doi.org/10.1364/OL.27.001652

    Article  PubMed  Google Scholar 

  6. Tung Ch, Lin Y, Moon W, Weissleder R (2002) A receptor-targeted near-infrared fluorescence probe for in-vivo tumor imaging. ChemBioChem 3:784–786. https://doi.org/10.1002/1439-7633(20020802)

    Article  CAS  PubMed  Google Scholar 

  7. Frangioni J (2003) In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol 7:626–634. https://doi.org/10.1016/j.cbpa.2003.08.007

    Article  CAS  PubMed  Google Scholar 

  8. Olsen T, Lim J, Capone A (1996) 2 Adverse effects of fluorescein and indocyanine green angiography. Arch Ophthalmol 114:97–100. https://doi.org/10.1055/b-0034-56157

    Article  CAS  PubMed  Google Scholar 

  9. Vahremeijer A, Hutteman M, van der Vorst J (2013) Image-guided cancer surgery using near-infrared fluorescence. Nature Rev 10:507–518. https://doi.org/10.1038/nrclinonc.2013.123

    Article  CAS  Google Scholar 

  10. Khosroshahi ME (2011) Nourbakhsh, M (2011) An in-vitro investigation of skin tissue soldering using gold nanoshells and diode laser. Lasers Med Sci 26:49–55. https://doi.org/10.1007/s10103-010-0805-x

    Article  PubMed  Google Scholar 

  11. Khosroshahi M E, Nourbakhsh, M (2011) Enhanced laser tissue soldering using indocyanine green chromophore and gold nanoshells combination. J Biomed Opt 16:1–8 (088002) 1083–3668/2011/16(8)/088002/7

  12. Gomes A, Lunardi L, Marchetti J, Lunardi C (2006) Indocyanine green nanoparticles useful or photomedicine. Photomed laser Surg 24:514–521. https://doi.org/10.1089/pho.2006.24.514

    Article  CAS  PubMed  Google Scholar 

  13. Shirata Ch, Kaneko J, Inagaki Y, Kokudo T, Sato M (2017) Near-infrared photothermal/photodynamic therapy with indocyanine green induces apoptosis of hepatocellular carcinoma cells through oxidative stress. Sci Rep 7:13958–13964. https://doi.org/10.1038/s41598-017-14401-0

  14. Sheng Z, Hu D, Zheng M, Zhao P, Liu H, Gao D (2014) Smart human serum albumin-indocyanine green nanoparticles generated by programmed assembly for dual-modal imaging-guided cancer synergistic phototherapy. ACS Nano 8:12310–12322. https://doi.org/10.1021/nn5062386

    Article  CAS  PubMed  Google Scholar 

  15. Benson R, Kues H (1978) Fluorescence properties of indocyanine green as related to angiography. Phys Med Biol 23:159–163. https://doi.org/10.1088/0031-9155/23/1/017

    Article  CAS  PubMed  Google Scholar 

  16. Pinchuk A, Schatz G (2008) Collective surface plasmon resonance coupling in silver nanoshell arrays. Appl Phys B 93:31–38. https://doi.org/10.1007/s00340-008-3148-6

    Article  CAS  Google Scholar 

  17. Richardson H, Carison M, Tandler P (2009) Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions. Nano Lett 9:1139–1146. https://doi.org/10.1021/nl8036905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rodriguez-Oliveros R, Sanchez-Gill J (2012) Gold nanostars as thermoplasmonic nanoparticles for optical heating. Opt Exp 20:621–626. https://doi.org/10.1364/OE.20.000621

    Article  CAS  Google Scholar 

  19. Ray K, Badugu R, Lakowicz J (2006) Distance-dependent metal-enhanced fluorescence from Langmuir-Blodgett monolayers of alkyl-NBD derivatives on silver island films. Langmuir 22:8374–8378. https://doi.org/10.1021/1a061058f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ribeiro C, Baleizao C, Farinha S (2017) Artefact-free evaluation of metal enhanced fluorescence in silica coated gold nanoparticles. Sci Rep 7:1–12. https://doi.org/10.1038/s41598-017-02678-0

    Article  CAS  Google Scholar 

  21. Malicka J, Gryczynski I, Geddes C, Lackowicz J (2003) Metal-enhanced emission from indocyanine green: a new approach to in vivo imaging. J Biomed Opt 8:472–478. https://doi.org/10.1117/1.1578643

    Article  CAS  PubMed  Google Scholar 

  22. Feldherr C, Akin D (1990) 111:1–8 J Cell Biol 8:472–478. https://doi.org/10.1117/1.157864310.1117/1.1578643

  23. Xie H, Franzen M, Feldheim D (2003) Critical flocculation concentrations, binding isotherms, and ligand exchange properties of peptide-modified gold nanoparticles studied by UV−visible, fluorescence, and time-correlated single photon counting spectroscopies. Anal Chem 75:5797–6490. https://doi.org/10.1021/ac034578d

    Article  CAS  PubMed  Google Scholar 

  24. Guerrini L, Hartsuiker L, Manohar S, Otto C (2011) Monomer adsorption of indocyanine green to gold nanoparticles. Nanoscale 3:4247–4253. https://doi.org/10.1039/c1nr10551e

    Article  CAS  PubMed  Google Scholar 

  25. Brewer S, Glomm W, Johnson M, Knag M, Franzen S (2005) Probing BSA binding to citrate-coated gold nanoparticles and surfaces. Langmuir 21:9303–9307. https://doi.org/10.1021/la050588t

    Article  CAS  PubMed  Google Scholar 

  26. Chen J, Sheng Z, Li P, Wu M (2005) Indocyanine green-loaded gold nanostars for sensitive SERS imaging and subcellular monitoring of photothermal therapy. Nanoscale. https://doi.org/10.1039/C7NR027988

    Article  Google Scholar 

  27. Tsai D, DelRio F, Kneene A, Tyner K (2011) Adsorption and conformation of serum albumin protein on gold nanoparticles investigation using dimensional measurements and in situ spectroscopic methods. Langmuir 27:2464–2477. https://doi.org/10.1021/la104124d

    Article  CAS  PubMed  Google Scholar 

  28. Zheng J, Badugu R, Lacowicz J (2008) Fluorescence quenching of CdTe nanocrystals by bound gold nanoparticles in aqueous solution. Plasmonics 3:3–11. https://doi.org/10.1007/s11468-007-9047-6

    Article  CAS  Google Scholar 

  29. Losin M, Toderas F, Astilean S (2009) Study of protein-gold nanoparticle conjugates by fluorescence and surface-enhanced Raman scattering. J Mol Struct 924–926:196–200. https://doi.org/10.1016/j.molstruc.2009.02.004

    Article  CAS  Google Scholar 

  30. Mandal G, Bardhan M, Ganguly T (2010) Interaction of bovine serum albumin and albumin-gold nanoconjugates with L-asartic acid. A spectroscopic approach. Colloids Surf B: Biointer 81:178–184. https://doi.org/10.1016/j.colsurfb.2010.07.002

    Article  CAS  Google Scholar 

  31. Gao D, Tian YY, Bi S, Chen Y (2005) Studies on the interaction of colloidal gold and serum albumins by spectral methods. Spectrocheim Acta A 62:1203–1208. https://doi.org/10.1016/j.saa.2005.04.026

    Article  CAS  Google Scholar 

  32. Jang D, Elsayed M (1989) Tryptophan fluorescence quenching as a monitor for the protein conformation changes occurring during the photocycle of bacteriorhodopsin under different perturbation. Proc Natl Aca Sci USA 86:5815–5819. https://doi.org/10.1073/pnas.86.15.5815

    Article  CAS  Google Scholar 

  33. Zakharko Y, Botsoa J, Alekseev S, Lysenko V, Bluet J (2010) Influence of the interfacial chemical environment on the luminescence of 3C-SiC nanoparticles. J Appl Phys 107:013503. https://doi.org/10.1063/1.3273498

    Article  CAS  Google Scholar 

  34. Baffou G, Quidant R (2013) Thermo-plasmonics: using metallic nanostructures as nano-sources of heat. Laser Photonics Rev 7:171–187. https://doi.org/10.1002/lpor.201200003

    Article  CAS  Google Scholar 

  35. Jain P (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110:7238–7248. https://doi.org/10.1021/jp057170o

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank MIS Electronics Inc. for supporting the research and Roxana Chabok for her assistance with the data preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad E. Khosroshahi.

Ethics declarations

Ethics approval

This research does not contain any form of studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khosroshahi, M.E., Woll-Morison, V. & Patel, Y. Near IR-plasmon enhanced guided fluorescence and thermal imaging of tissue subsurface target using ICG-labeled gold nanourchin and protein contrast agent: implication of stability. Lasers Med Sci 37, 2145–2156 (2022). https://doi.org/10.1007/s10103-021-03471-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-021-03471-2

Keywords

Navigation