Skip to main content

Advertisement

Log in

Photobiomodulation combined with adipose-derived stem cells encapsulated in methacrylated gelatin hydrogels enhances in vivo bone regeneration

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Reconstruction of bone defects is still a significant challenge. The aim of this study was to evaluate the effect of application of photobiomodulation (PBM) to enhance in vivo bone regeneration and osteogenic differentiation potential of adipose-derived stem cells (ADSCs) encapsulated in methacrylated gelatin (GEL-MA) hydrogels. Thirty-six Sprague-Dawley rats were randomly separated into 3 experimental groups (n = 12 each). The groups were control/blank defect (I), GEL-MA hydrogel (II), and ADSC-loaded GEL-MA (GEL-MA+ADSC) hydrogel (III). Biparietal critical sized bone defects (6 mm in size) are created in each animal. Half of the animals from each group (n = 6 each) were randomly selected for PBM application using polychromatic light in the near infrared region, 600–1200 nm. PBM was administered from 10 cm distance cranially in 48 h interval. The calvaria were harvested at the 20th week, and macroscopic, microtomographic, and histologic evaluation were performed for further analysis. Microtomographic evaluation demonstrated the highest result for mineralized matrix formation (MMF) in group III. PBM receiving samples of group III showed mean MMF of 79.93±3.41%, whereas the non-PBM receiving samples revealed mean MMF of 60.62±6.34 % (p=0.002). In terms of histologic evaluation of bone defect repair, the higher scores were obtained in the groups II and III when compared to the control group (2.0 for both PBM receiving and non-receiving specimens; p<0.001). ADSC-loaded microwave-induced GEL-MA hydrogels and periodic application of photobiomodulation with polychromatic light appear to have beneficial effect on bone regeneration and can stimulate ADSCs for osteogenic differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fearon JA, Griner D, Ditthakasem K, Herbert M (2017) Autogenous bone reconstruction of large secondary skull defects. Plast Reconstr Surg 139:427–438

    CAS  PubMed  Google Scholar 

  2. Perry CR (1999) Bone repair techniques, bone graft, and bone graft substitutes. Clin Orthop Relat Res:71–86

  3. McCarthy JG, Stelnicki EJ, Mehrara BJ, Longaker MT (2001) Distraction osteogenesis of the craniofacial skeleton. Plast Reconstr Surg 107:1812–1827

    CAS  PubMed  Google Scholar 

  4. Roseti L, Parisi V, Petretta M, Cavallo C, Desando G, Bartolotti I, Grigolo B (2017) Scaffolds for bone tissue engineering: State of the art and new perspectives. Mater Sci Eng C Mater Biol Appl 78:1246–1262

    CAS  PubMed  Google Scholar 

  5. Zhang YS, Khademhosseini A (2017) Advances in engineering hydrogels. Science 356

  6. Kim BS, Cho CS (2018) Injectable hydrogels for regenerative medicine. Tissue Eng Regen Med 15:511–512

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Fang XX, Xie J, Zhong LX, Li JR, Rong DM, Li XS, Ouyang J (2016) Biomimetic gelatin methacrylamide hydrogel scaffolds for bone tissue engineering. J Mater Chem B 4:1070–1080

    CAS  PubMed  Google Scholar 

  8. Van den Bulcke AI, Bogdanov B, De Rooze N, Schacht EH, Cornelissen M, Berghmans H (2000) Structural and rheological properties of methacrylamide modified gelatin hydrogels. Biomacromolecules 1:31–38

    Google Scholar 

  9. Irmak G, Demirtas TT, Gumusderelioglu M (2019) Highly methacrylated gelatin bioink for bone tissue engineering. Acs Biomater Sci Eng 5:831–845

    CAS  PubMed  Google Scholar 

  10. Mester E, Spiry T, Szende B, Tota JG (1971) Effect of laser rays on wound healing. Am J Surg 122:532–535

    CAS  PubMed  Google Scholar 

  11. Dodd EM, Winter MA, Hordinsky MK, Sadick NS, Farah RS (2018) Photobiomodulation therapy for androgenetic alopecia: a clinician’s guide to home-use devices cleared by the Federal Drug Administration. J Cosmet Laser Ther 20:159–167

    PubMed  Google Scholar 

  12. Hennessy M, Hamblin MR (2017) Photobiomodulation and the brain: a new paradigm. J Opt 19:013003

    PubMed  Google Scholar 

  13. Kuffler DP (2016) Photobiomodulation in promoting wound healing: a review. Regen Med 11:107–122

    CAS  PubMed  Google Scholar 

  14. Karu T (1989) Laser biostimulation: a photobiological phenomenon. J Photochem Photobiol B 3:638–640

    CAS  PubMed  Google Scholar 

  15. Irmak G, Demirtaş TT, Gümüşderelioğlu M (2019) Sustained release of growth factor from photoactivated platelet rich plasma (PRP). Eur J Pharm Biopharm 2020 Mar 148:67–76

    PubMed  Google Scholar 

  16. Gupta A, Avci P, Sadasivam M, Chandran R, Parizotto N, Vecchio D, de Melo WC, Dai T, Chiang LY, Hamblin MR (2013) Shining light on nanotechnology to help repair and regeneration. Biotechnol Adv 31:607–631

    CAS  PubMed  Google Scholar 

  17. Ulker N, Cakmak AS, Kiremitci AS, Gumusderelioglu M (2016) Polychromatic light-induced osteogenic activity in 2D and 3D cultures. Lasers Med Sci 31:1665–1674

    PubMed  Google Scholar 

  18. Soleimani M, Abbasnia E, Fathi M, Sahraei H, Fathi Y, Kaka G (2012) The effects of low-level laser irradiation on differentiation and proliferation of human bone marrow mesenchymal stem cells into neurons and osteoblasts-an in vitro study. Lasers Med Sci 27:423–430

    PubMed  Google Scholar 

  19. Cakmak AS, Cakmak S, Vatansever HS, Gumusderelioglu M (2018) Photostimulation of osteogenic differentiation on silk scaffolds by plasma arc light source. Lasers Med Sci 33:785–794. https://doi.org/10.1007/s10103-017-2414-4

    Article  PubMed  Google Scholar 

  20. El Nawam H, El Backly R, Zaky A, Abdallah A (2019) Low-level laser therapy affects dentinogenesis and angiogenesis of in vitro 3D cultures of dentin-pulp complex. Lasers Med Sci 34:1689–1698

    PubMed  Google Scholar 

  21. Lin F, Josephs SF, Alexandrescu DT, Ramos F, Bogin V, Gammill V, Dasanu CA, De Necochea-Campion R, Patel AN, Carrier E, Koos DR (2010) Lasers, stem cells, and COPD. J Transl Med 8:16

    PubMed  PubMed Central  Google Scholar 

  22. Oliveira FA, Matos AA, Santesso MR, Tokuhara CK, Leite AL, Bagnato VS, Machado MA, Peres-Buzalaf C, Oliveira RC (2016) Low intensity lasers differently induce primary human osteoblast proliferation and differentiation. J Photochem Photobiol B 163:14–21

    CAS  PubMed  Google Scholar 

  23. Calis M, Demirtas TT, Sert G, Irmak G, Gumusderelioglu M, Turkkani A, Cakar AN, Ozgur F (2019) Photobiomodulation with polychromatic light increases zone 4 survival of transverse rectus abdominis musculocutaneous flap. Lasers Surg Med 51:538–549

    PubMed  Google Scholar 

  24. Akdere OE, Shikhaliyeva I, Gumusderelioglu M (2019) Boron mediated 2D and 3D cultures of adipose derived mesenchymal stem cells. Cytotechnology 71:611–622

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Bolgen N, Vargel I, Korkusuz P, Guzel E, Plieva F, Galaev I, Matiasson B, Piskin E (2009) Tissue responses to novel tissue engineering biodegradable cryogel scaffolds: an animal model. J Biomed Mater Res A 91:60–68

    PubMed  Google Scholar 

  26. Preethi Soundarya S, Haritha Menon A, Viji Chandran S, Selvamurugan N (2018) Bone tissue engineering: scaffold preparation using chitosan and other biomaterials with different design and fabrication techniques. Int J Biol Macromol 119:1228–1239

    CAS  PubMed  Google Scholar 

  27. Mishra R, Bishop T, Valerio IL, Fisher JP, Dean D (2016) The potential impact of bone tissue engineering in the clinic. Regen Med 11:571–587

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Roddy E, DeBaun MR, Daoud-Gray A, Yang YP, Gardner MJ (2018) Treatment of critical-sized bone defects: clinical and tissue engineering perspectives. Eur J Orthop Surg Traumatol 28:351–362

    PubMed  Google Scholar 

  29. Panetta NJ, Gupta DM, Longaker MT (2009) Bone tissue engineering scaffolds of today and tomorrow. J Craniofac Surg 20:1531–1532

    PubMed  Google Scholar 

  30. Calis M, Demirtas TT, Vatansever A, Irmak G, Sakarya AH, Atilla P, Ozgur F, Gumusderelioglu M (2017) A biomimetic alternative to synthetic hydroxyapatite: “boron-containing bone-like hydroxyapatite” precipitated from simulated body fluid. Ann Plast Surg 79:304–311

    CAS  PubMed  Google Scholar 

  31. Bakhshandeh B, Zarrintaj P, Oftadeh MO, Keramati F, Fouladiha H, Sohrabi-Jahromi S, Ziraksaz Z (2017) Tissue engineering; strategies, tissues, and biomaterials. Biotechnol Genet Eng Rev 33:144–172

    CAS  PubMed  Google Scholar 

  32. Paschos NK, Brown WE, Eswaramoorthy R, Hu JC, Athanasiou KA (2015) Advances in tissue engineering through stem cell-based co-culture. J Tissue Eng Regen Med 9:488–503

    CAS  PubMed  Google Scholar 

  33. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228

    CAS  PubMed  Google Scholar 

  35. Calis M, Demirtas TT, Atilla P, Tatar I, Ersoy O, Irmak G, Celik HH, Cakar AN, Gumusderelioglu M, Ozgur F (2014) Estrogen as a novel agent for induction of adipose-derived mesenchymal stem cells for osteogenic differentiation: in vivo bone tissue-engineering study. Plast Reconstr Surg 133:499e–510e

    CAS  PubMed  Google Scholar 

  36. Mester E, Nagylucskay S, Tisza S, Mester A (1978) Stimulation of wound healing by means of laser rays. Part III--investigation of the effect on immune competent cells. Acta Chir Acad Sci Hung 19:163–170

    CAS  PubMed  Google Scholar 

  37. Mester E, Spiry T, Szende B (1973) Effect of laser rays on wound healing. Bull Soc Int Chir 32:169–173

    CAS  PubMed  Google Scholar 

  38. Aimbire F, Albertini R, Pacheco MT, Castro-Faria-Neto HC, Leonardo PS, Iversen VV, Lopes-Martins RA, Bjordal JM (2006) Low-level laser therapy induces dose-dependent reduction of TNFalpha levels in acute inflammation. Photomed Laser Surg 24:33–37

    CAS  PubMed  Google Scholar 

  39. Lubart R, Lavi R, Friedmann H, Rochkind S (2006) Photochemistry and photobiology of light absorption by living cells. Photomed Laser Surg 24:179–185

    CAS  PubMed  Google Scholar 

  40. Karu T (1999) Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J Photochem Photobiol B 49:1–17

    CAS  PubMed  Google Scholar 

  41. Medrado AP, Soares AP, Santos ET, Reis SR, Andrade ZA (2008) Influence of laser photobiomodulation upon connective tissue remodeling during wound healing. J Photochem Photobiol B 92:144–152

    CAS  PubMed  Google Scholar 

  42. Brightman LA, Brauer JA, Anolik R, Weiss ET, Karen J, Chapas A, Hale E, Bernstein L, Geronemus RG (2011) Reduction of thickened flap using fractional carbon dioxide laser. Lasers Surg Med 43:873–874

    PubMed  Google Scholar 

  43. Abinaya B, Prasith TP, Ashwin B, Viji Chandran S, Selvamurugan N (2019) Chitosan in surface modification for bone tissue engineering applications. Biotechnol J:e1900171

  44. Hollinger JO, Schmitt JM, Buck DC, Shannon R, Joh SP, Zegzula HD, Wozney J (1998) Recombinant human bone morphogenetic protein-2 and collagen for bone regeneration. J Biomed Mater Res 43:356–364

    CAS  PubMed  Google Scholar 

  45. Nichol JW, Koshy ST, Bae H, Hwang CM, Yamanlar S, Khademhosseini A (2010) Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 31:5536–5544

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Klotz BJ, Gawlitta D, Rosenberg A, Malda J, Melchels FPW (2016) Gelatin-methacryloyl hydrogels: Towards biofabrication-based tissue repair. Trends Biotechnol 34:394–407

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Djagny VB, Wang Z, Xu S (2001) Gelatin: a valuable protein for food and pharmaceutical industries: review. Crit Rev Food Sci Nutr 41:481–492

    CAS  PubMed  Google Scholar 

  48. Lai JY, Li YT (2010) Functional assessment of cross-linked porous gelatin hydrogels for bioengineered cell sheet carriers. Biomacromolecules 11:1387–1397

    CAS  PubMed  Google Scholar 

  49. Si Z, Wang X, Sun C, Kang Y, Xu J, Wang X, Hui Y (2019) Adipose-derived stem cells: sources, potency, and implications for regenerative therapies. Biomed Pharmacother 114:108765

    CAS  PubMed  Google Scholar 

  50. Fraser J, Wulur I, Alfonso Z, Zhu M, Wheeler E (2007) Differences in stem and progenitor cell yield in different subcutaneous adipose tissue depots. Cytotherapy 9:459–467

    CAS  PubMed  Google Scholar 

  51. Barbatelli G, Murano I, Madsen L, Hao Q, Jimenez M, Kristiansen K, Giacobino JP, De Matteis R, Cinti S (2010) The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation. Am J Physiol Endocrinol Metab 298:E1244–E1253

    CAS  PubMed  Google Scholar 

  52. Baer PC, Koch B, Hickmann E, Schubert R, Cinatl J Jr, Hauser IA, Geiger H (2019) Isolation, characterization, differentiation and immunomodulatory capacity of mesenchymal stromal/stem cells from human perirenal adipose tissue. Cells 2019 Oct 29 8(11):0

    CAS  PubMed Central  Google Scholar 

Download references

Funding

This work was supported from the Hacettepe University Scientific Research Foundation (Grant No: THD-2017-14465).

Author information

Authors and Affiliations

Authors

Contributions

Mert Calis designed the animal study, conducted the experiments, and wrote the paper. Murat Kara and Galip Gencay Üstün contributed the animal experiments, postoperative care, and application of the PBM. Gülseren Irmak and Tuğrul Tolga Demirtaş prepared the stem cells and the biomaterials for the study. Tuğrul Tolga Demirtaş and Mert Calis performed the microCT analyses. Ayşe Nur Çakar and Ayten Türkkanı performed the histological analyses. Menemşe Gümüşderelioğlu and Figen Özgür designed and supervised the study and edited the final manuscript.

Corresponding author

Correspondence to Mert Calis.

Ethics declarations

Ethical approval

The study was conducted, and all animal experiments were performed following approval of the Institutional Review Board of Hacettepe University on Experimental Studies (Approval no.: 2017/29-04).

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calis, M., Irmak, G., Demirtaş, T.T. et al. Photobiomodulation combined with adipose-derived stem cells encapsulated in methacrylated gelatin hydrogels enhances in vivo bone regeneration. Lasers Med Sci 37, 595–606 (2022). https://doi.org/10.1007/s10103-021-03308-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-021-03308-y

Keywords

Navigation