Skip to main content

Advertisement

Log in

Photostimulation of osteogenic differentiation on silk scaffolds by plasma arc light source

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Low-level laser therapy (LLLT) has been used for more than 30 years to heal wounds. In recent years, LLLT or photostimulation has been indicated as an effective tool for regenerative and dental medicine by using monochromatic light. The aim of this study is to indicate the usability of plasma arc light source for bone regeneration. This is why we used polychromatic light source providing effective wavelengths in the range of 590–1500 nm for cellular response and investigated photostimulation effects on osteogenic differentiation of human mesenchymal stem cells (hMSCs) seeded on 3D silk scaffolds. Cellular responses were examined by using cell culture methods in terms of proliferation, differentiation, and morphological analyses. The results showed that photostimulation with a polychromatic light source (applied for 5 min from the 3rd day after seeding up to the 28th day in 2-day intervals with 92-mW/cm2 power from 10-cm distance to the cells) enhanced osteogenic differentiation of hMSCs according to higher alkaline phosphatase (ALP) activity, collagen and calcium content, osteogenic gene expressions, and matrix mineralization. In conclusion, we suggest that the plasma arc light source that was used here has a great potential for bone regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lacroix D, Prendergast PJ, Li G, Marsh D (2002) Biomechanical model to simulate tissue differentiation and bone regeneration: application to fracture healing. Med Biol Eng Comput 40:14–21

    Article  CAS  PubMed  Google Scholar 

  2. Chao EY, Inoue N (2003) Biophysical stimulation of bone fracture repair, regeneration and remodelling. Eur Cell Mater 6:72–84

    Article  PubMed  Google Scholar 

  3. Çakmak AS, Çakmak S, Kim K, Yiğit S, White JD, Raja WK, Kaplan DL, Gümüşderelioğlu M (2016) Synergistic effect of exogeneous and endogeneous electrostimulation on osteogenic differentiation of human mesenchymal stem cells seeded on silk scaffolds. J Orthop Res 34:581–590

    Article  PubMed  Google Scholar 

  4. Yu W, Naim JO, McGowan M, Ippolito K, Lanzafame RJ (1997) Photomodulation of oxidative metabolism and electron chain enzymes in rat liver mitochondria. Photochem Photobiol 66:866–871

    Article  CAS  PubMed  Google Scholar 

  5. Karu TI (2003) Low-power laser therapy. CRC Press, USA

    Book  Google Scholar 

  6. Conlan MJ, Rapley JW, Cobb CM (1996) Biostimulation of wound healing by low-energy laser irradiation. A review. J Clin Periodontol 23:492–496

    Article  CAS  PubMed  Google Scholar 

  7. Assia E, Rosner M, Belkin M, Solomon A, Schwartz M (1989) Temporal parameters of low energy laser irradiation for optimal delay of post-traumatic degeneration of rat optic nerve. Brain Res 476:205–212

    Article  CAS  PubMed  Google Scholar 

  8. Bibikova A, Oron U (1993) Promotion of muscle regeneration in the toad (Bufo viridis) gastrocnemius muscle by low-energy laser irradiation. Anat Rec 235:374–380

    Article  CAS  PubMed  Google Scholar 

  9. Weiss N, Oron U (1992) Enhancement of muscle regeneration in the rat gastrocnemius muscle by low energy laser irradiation. Anat Embryol 186:497–503

    Article  CAS  PubMed  Google Scholar 

  10. Kawasaki K, Shimizu N (2000) Effects of low-energy laser irradiation on bone remodeling during experimental tooth movement in rats. Lasers Surg Med 26:282–291

    Article  CAS  PubMed  Google Scholar 

  11. Kim HK, Kim JH, Abbas AA, Kim DO, Park SJ, Chung JY, Song EK, Yoon TR (2009) Red light of 647 nm enhances osteogenic differentiation in mesenchymal stem cells. Lasers Med Sci 24:214–222

    Article  PubMed  Google Scholar 

  12. Soleimani M, Abbasnia E, Fathi M, Sahraei H, Fathi Y, Kaka G (2012) The effects of low-level laser irradiation on differentiation and proliferation of human bone marrow mesenchymal stem cells into neurons and osteoblasts—an in vitro study. Lasers Med Sci 27:423–430

    Article  PubMed  Google Scholar 

  13. Abramovitch-Gottlib L, Gross T, Naveh D, Geresh S, Rosenwaks S, Bar I, Vago R (2005) Low level laser irradiation stimulates osteogenic phenotype of mesenchymal stem cells seeded on a three-dimensional biomatrix. Lasers Med Sci 20:138–146

    Article  PubMed  Google Scholar 

  14. Karu T (1999) Primary and secondary mechanisms of action of visible-to-near IR radiation on cells. J Photochem Photobiol B Biol 49:1–17

    Article  CAS  Google Scholar 

  15. Karu TI (2008) Mitochondrial signaling in mammalian cells activated by red and near-IR radiation. Photochem Photobiol 84:1091–1099

    Article  CAS  PubMed  Google Scholar 

  16. Almeida-Lopes L, Rigau J, Zangaro RA, Guidugli-Neto J, Jaeger MM (2001) Comparison of the low level laser therapy effects on cultured human gingival fibroblasts proliferation using different irradiance and same fluence. Lasers Surg Med 29:179–184

    Article  CAS  PubMed  Google Scholar 

  17. AlGhamdi KM, Kumar A, Moussa NA (2012) Low-level laser therapy: a useful technique for enhancing the proliferation of various cultured cells. Lasers Med Sci 27:237–249

    Article  PubMed  Google Scholar 

  18. Fujihara NA, Hiraki KR, Marques MM (2006) Irradiation at 780 nm increases proliferation rate of osteoblasts independently of dexamethasone presence. Lasers Surg Med 38:332–336

    Article  PubMed  Google Scholar 

  19. Khadra M, Lyngstadaas SP, Haanaes HR, Mustafa K (2005) Effect of laser therapy on attachment, proliferation and differentiation of human osteoblast-like cells cultured on titanium implant material. Biomaterials 26:3503–3509

    Article  CAS  PubMed  Google Scholar 

  20. Gan L, Tse C, Pilliar RM, Kandel RA (2007) Low-power laser stimulation of tissue engineered cartilage tissue formed on a porous calcium polyphosphate scaffold. Lasers Surg Med 39:286–293

    Article  PubMed  Google Scholar 

  21. Parenti SI, Panseri S, Gracco A, Sandri M, Tampieri A, Bonetti GA (2013) Effect of low-level laser irradiation on osteoblast-like cells cultured on porous hydroxyapatite scaffolds. Ann Ist Super Sanita 49:255–260

    CAS  Google Scholar 

  22. Ülker N, Çakmak AS, Kiremitçi A, Gümüşderelioğlu M (2016) Polychromatic light-induced osteogenic activity in 2d and 3d cultures. Lasers Med Sci 31:1665–1674

    Article  PubMed  Google Scholar 

  23. Bhumiratana S, Grayson WL, Castaneda A, Rockwood DN, Gil ES, Kaplan DL, Vunjak-Novakovic G (2011) Nucleation and growth of mineralized bone matrix on silk-hydroxyapatite composite scaffolds. Biomaterials 32:2812–2820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nazarov R, Jin HJ, Kaplan DL (2004) Porous 3-D scaffolds from regenerated silk fibroin. Biomacromolecules 5:718–726

    Article  CAS  PubMed  Google Scholar 

  25. Meinel L, Karageorgiou V, Hofmann S, Fajardo R, Snyder B, Li C, Zichner L, Langer R, Vunjak-Novakovic G, Kaplan DL (2004) Engineering bone-like tissue in vitro using human bone marrow stem cells and silk scaffolds. J Biomed Mater Res A 71:25–34

    Article  PubMed  Google Scholar 

  26. Tuby H, Maltz L, Oron U (2007) Low-level laser irradiation (LLLI) promotes proliferation of mesenchymal and cardiac stem cells in culture. Lasers Surg Med 39:373–378

    Article  PubMed  Google Scholar 

  27. Quickenden T, Daniels L (1993) Attempted biostimulation of division in Saccharomyces cerevisiae using red coherent light. Photochem Photobiol 57:272–278

    Article  CAS  PubMed  Google Scholar 

  28. Schneede P, Jelkmann W, Schramm U, Fricke H, Steinmetz M, Hofstetter A (1988) Effects of the helium-neon laser on rat kidney epithelial cells in culture. Lasers Med Sci 3:249–257

    Article  Google Scholar 

  29. Renno ACM, McDonnell PA, Crovace MC, Zanotto ED, Laakso L (2010) Effect of 830 nm laser phototherapy on osteoblasts grown in vitro on biosilicate® scaffolds. Photomed Laser Surg 28:131–133

    Article  CAS  PubMed  Google Scholar 

  30. Bouvet-Gerbettaz S, Merigo E, Rocca JP, Carle GF, Rochet N (2009) Effects of low-level laser therapy on proliferation and differentiation of murine bone marrow cells into osteoblasts and osteoclasts. Lasers Surg Med 41:291–297

    Article  PubMed  Google Scholar 

  31. Romijn JC, Verkoelen CF, Schroeder FH (1988) Application of the MTT assay to human prostate cancer cell lines in vitro: establishment of test conditions and assessment of hormone-stimulated growth and drug-induced cytostatic and cytotoxic effects. Prostate 12:99–110

    Article  CAS  PubMed  Google Scholar 

  32. Teng S-H, Lee F-J, Yoon B-H, Shin D-S, Kim H-E, Oh J-S (2009) Chitosan/nanohydroxyapatite composite membranes via dynamic filtration for guided bone regeneration. J Biomed Mater Res A 88:569–580

    Article  PubMed  Google Scholar 

  33. Wu JY, Chen CH, Yeh LY (2013) Low-power laser irradiation promotes the proliferation and osteogenic differentiation of human periodontal ligament cells via cyclic adenosine monophosphate. Int J Oral Sci 5:85–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Stein A, Benayahu D, Maltz L, Oron U (2005) Low-level laser irradiation promotes proliferation and differentiation of human osteoblasts in vitro. Photomed Laser Surg 23:161–166

    Article  CAS  PubMed  Google Scholar 

  35. Ueda Y, Shimizu N (2003) Effects of pulse frequency of low-level laser therapy (LLLT) on bone nodule formation in rat calvarial cells. J Clin Laser Med Surg 21:271–277

    Article  PubMed  Google Scholar 

  36. Mizuno M, Kuboki Y (2001) Osteoblast-related gene expression of bone marrow cells during the osteoblastic differentiation induced by type I collagen. J Biochem 129:133–138

    Article  CAS  PubMed  Google Scholar 

  37. Hawkins D, Houreld N, Abrahamse H (2005) Low level laser therapy (LLLT) as an effective therapeutic modality for delayed wound healing. Ann N Y Acad Sci 1056:486–493

    Article  CAS  PubMed  Google Scholar 

  38. Pires D, Xavier M, Araujo T, Silva JA, Aimbire F, Albertini R (2011) Low-level laser therapy (LLLT; 780 nm) acts differently on mRNA expression of anti- and pro-inflammatory mediators in an experimental model of collagenase-induced tendinitis in rat. Lasers Med Sci 26:85–94

    Article  PubMed  Google Scholar 

  39. Bloise N, Ceccarelli G, Minzioni P, Vercellino M, Benedetti L, De Angelis MG (2013) Investigation of low-level laser therapy potentiality on proliferation and differentiation of human osteoblast-like cells in the absence/presence of osteogenic factors. J Biomed Opt 18:1–13

    Article  Google Scholar 

  40. Coombe AR, Ho CT, Darendeliler MA, Hunter N, Philips JR, Chapple CC (2001) The effects of low level laser irradiation on osteoblastic cells. Clin Orthod Res 4:3–14

    Article  CAS  PubMed  Google Scholar 

  41. Zayzafoon M (2006) Calcium/calmodulin signaling controls osteoblast growth and differentiation. J Cell Biochem 97:56–70

    Article  CAS  PubMed  Google Scholar 

  42. Sundelacruz S, Levin M, Kaplan DL (2008) Membrane potential controls adipogenic and osteogenic differentiation of mesenchymal stem cells. PLoS One 3:1–15

    Article  Google Scholar 

  43. Ryoo HM, Lee MH, Kim YJ (2006) Critical molecular switches involved in BMP-2-induced osteogenic differentiation of mesenchymal cells. 366:51–57

  44. Golub EE, Boesze-Battaglia K (2007) The role of alkaline phosphatase in mineralization. Curr Opin Orthop 18:444–448

    Article  Google Scholar 

  45. Birmingham E, Niebur GL, McHugh PE, Shaw G, Barry FP, McNamara LM (2012) Osteogenic differentiation of mesenchymal stem cells is regulated by osteocyte and osteoblast cells in a simplified bone niche. Eur Cell Mater 23:13–27

    Article  CAS  PubMed  Google Scholar 

  46. Martinasso G, Mozzati M, Pol R, Canuto RA, Muzio G (2007) Effect of superpulsed laser irradiation on bone formation in a human osteoblast-like cell line. Minerva Stomatol 56:27–30

    CAS  PubMed  Google Scholar 

  47. Jawad M, Husein A, Azlina A, Alam MK, Hassan R, Shaari R (2013) Effect of 940 nm low-level laser therapy on osteogenesis in vitro. J Biomed Opt 18:1–6

    Article  Google Scholar 

  48. Titushkin I, Cho M (2009) Regulation of cell cytoskeleton and membrane mechanics by electric field: role of linker proteins. Biophys J 96:717–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mauney JR, Sjostorm S, Blumberg J, Horan R, O’Leary JP, Vunjak-Novakovic G, Volloch V, Kaplan DL (2004) Mechanical stimulation promotes osteogenic differentiation of human bone marrow stromal cells on 3-D partially demineralized bone scaffolds ın vitro. Calcif Tissue Int 74:458–468

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Anıl S. Çakmak thanks The Scientific and Technological Research Council of Turkey (TUBITAK) for providing a National Postdoctoral Research Scholarship. The authors are grateful to Selin Gümüşderelioğlu for editing the language of the text.

Funding

The first author (Anıl Sera Çakmak) was financially supported by The Scientific and Technological Research Council of Turkey (TUBITAK), Ankara, Turkey, during this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Menemşe Gümüşderelioğlu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çakmak, A.S., Çakmak, S., Vatansever, H.S. et al. Photostimulation of osteogenic differentiation on silk scaffolds by plasma arc light source. Lasers Med Sci 33, 785–794 (2018). https://doi.org/10.1007/s10103-017-2414-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-017-2414-4

Keywords

Navigation