Skip to main content
Log in

Fish scale-derived scaffolds with MSCs loading for photothermal therapy of bone defect

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Tissue engineering scaffolds have presented effective value in bone repair. However, the integration of the diverse components, complex structures, and multifunction to impart the scaffolds with improved applicability is still a challenge. Here, we propose a novel fish-derived scaffold combined with photothermal therapy and mesenchymal stem cells (MSCs) to promote bone regeneration. The fish-derived scaffold is composed of the decellularized fish scale and gelatin methacrylate synthesized from fish gelatin (fGelMA), which can promote the proliferation and osteogenesis of MSCs with no obvious immunological rejection. Furthermore, the black phosphorus (BP) nanosheets are incorporated into the fGelMA hydrogel network, which can endow the hydrogel with the capacity of photothermal conversion stimulated by near-infrared (NIR) light. The fish-derived scaffold can promote the osteogenesis process of MSCs with higher expression of osteogenic markers and higher mineralization assisted by the NIR light in vitro. The regeneration of mice calvarial defect has also been accelerated by the scaffold with photothermal therapy and MSCs. These results suggest that the fish-derived scaffold, photothermal therapy, and MSCs-based regenerative therapy is a promising clinical strategy in bone regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xie, C.; Ye, J. C.; Liang, R. J.; Yao, X. D.; Wu, X. Y.; Koh, Y.; Wei, W.; Zhang, X. Z.; Ouyang, H. W. Advanced strategies of biomimetic tissue-engineered grafts for bone regeneration. Adv. Healthc. Mater. 2021, 10, 2100408.

    Article  CAS  Google Scholar 

  2. Sen, M. K.; Miclau, T. Autologous iliac crest bone graft: Should it still be the gold standard for treating nonunions? Injury 2007, 38 Suppl 1, S75–S80.

    Article  Google Scholar 

  3. Quan, K.; Xu, Q.; Zhu, M. S.; Liu, X. Q.; Dai, M. Analysis of risk factors for non-union after surgery for limb fractures: A case-control study of 669 subjects. Front. Surg. 2021, 8, 754150.

    Article  Google Scholar 

  4. Stewart, S. K. Fracture non-union: A review of clinical challenges and future research needs. Malays. Orthop. J. 2019, 13, 1–10.

    Article  CAS  Google Scholar 

  5. Krampera, M.; Le Blanc, K. Mesenchymal stromal cells: Putative microenvironmental modulators become cell therapy. Cell Stem Cell 2021, 28, 1708–1725.

    Article  CAS  Google Scholar 

  6. Robert, A. W.; Marcon, B. H.; Dallagiovanna, B.; Shigunov, P. Adipogenesis, osteogenesis, and chondrogenesis of human mesenchymal stem/stromal cells: A comparative transcriptome approach. Front. Cell Dev. Biol. 2020, 8, 561.

    Article  Google Scholar 

  7. Fu, J. F.; Wang, Y. X.; Jiang, Y. Y.; Du, J.; Xu, J. J.; Liu, Y. Systemic therapy of MSCs in bone regeneration: A systematic review and meta-analysis. Stem. Cell Res. Ther. 2021, 12, 377.

    Article  Google Scholar 

  8. Kimbrel, E. A.; Lanza, R. Next-generation stem cells—Ushering in a new era of cell-based therapies. Nat. Rev. Drug Discov. 2020, 19, 463–479.

    Article  CAS  Google Scholar 

  9. Shafiq, M.; Jung, Y.; Kim, S. H. Insight on stem cell preconditioning and instructive biomaterials to enhance cell adhesion, retention, and engraftment for tissue repair. Biomaterials 2016, 90, 85–115.

    Article  CAS  Google Scholar 

  10. Liu, C.; Xu, X. Y.; Cui, W. G.; Zhang, H. B. Metal-organic framework (MOF)-based biomaterials in bone tissue engineering. Eng. Regenerat. 2021, 2, 105–108.

    Google Scholar 

  11. Battafarano, G.; Rossi, M.; De Martino, V.; Marampon, F.; Borro, L.; Secinaro, A.; Del Fattore, A. Strategies for bone regeneration: From graft to tissue engineering. Int. J. Mol. Sci. 2021, 22, 1128.

    Article  CAS  Google Scholar 

  12. García-Gareta, E.; Coathup, M. J.; Blunn, G. W. Osteoinduction of bone grafting materials for bone repair and regeneration. Bone 2015, 81, 112–121.

    Article  Google Scholar 

  13. Kim, H. D.; Amirthalingam, S.; Kim, S. L.; Lee, S. S.; Rangasamy, J.; Hwang, N. S. Biomimetic materials and fabrication approaches for bone tissue engineering. Adv. Healthc. Mater. 2017, 6, 1700612.

    Article  Google Scholar 

  14. Yu, Y. R.; Wang, Q.; Wang, C.; Shang, L. R. Living materials for regenerative medicine. Eng. Regenerat. 2021, 2, 96–104.

    Google Scholar 

  15. Yamada, S.; Yamamoto, K.; Nakazono, A.; Matsuura, T.; Yoshimura, A. Functional roles of fish collagen peptides on bone regeneration. Dent. Mater. J. 2021, 40, 1295–1302.

    Article  CAS  Google Scholar 

  16. Kara, A.; Tamburaci, S.; Tihminlioglu, F.; Havitcioglu, H. Bioactive fish scale incorporated chitosan biocomposite scaffolds for bone tissue engineering. Int. J. Biol. Macromol. 2019, 130, 266–279.

    Article  CAS  Google Scholar 

  17. Mizuno, Y.; Taguchi, T. Fish gelatin-based absorbable dural sealant with anti-inflammatory properties. ACS Biomater. Sci. Eng. 2021, 7, 4991–4998.

    Article  CAS  Google Scholar 

  18. Chen, J. J.; Gao, K. L.; Liu, S.; Wang, S. J.; Elango, J.; Bao, B.; Dong, J.; Liu, N.; Wu, W. H. Fish collagen surgical compress repairing characteristics on wound healing process in vivo. Mar. Drugs 2019, 17, 33.

    Article  CAS  Google Scholar 

  19. Lima-Junior, E. M.; De Moraes filho, M. O.; Costa, B. A.; Fechine, F. V.; De Moraes, M. E. A.; Silva-Junior, F. R.; Soares, M. F. A. D. N.; Rocha, M. B. S.; Leontsinis, C. M. P. Innovative treatment using tilapia skin as a xenograft for partial thickness burns after a gunpowder explosion. J. Surg. Case Rep. 2019, 2019, rjz181.

    Article  Google Scholar 

  20. Shao, J. D.; Xie, H. H.; Huang, H.; Li, Z. B.; Sun, Z. B.; Xu, Y. H.; Xiao, Q. L.; Yu, X. F.; Zhao, Y. T.; Zhang, H. et al. Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy. Nat. Commun. 2016, 7, 12967.

    Article  CAS  Google Scholar 

  21. Shao, J. D.; Ruan, C. S.; Xie, H. H.; Chu, P. K.; Yu, X. F. Photochemical activity of black phosphorus for near-infrared light controlled in situ biomineralization. Adv. Sci. (Weinh.) 2020, 7, 2000439.

    CAS  Google Scholar 

  22. Wang, X. C.; Yu, Y. R.; Yang, C. Y.; Shao, C. M.; Shi, K. Q.; Shang, L. R.; Ye, F. F.; Zhao, Y. J. Microfluidic 3D printing responsive scaffolds with biomimetic enrichment channels for bone regeneration. Adv. Funct. Mater. 2022, 32, 2111909.

    Article  CAS  Google Scholar 

  23. Zhang, G. W.; Chaves, A.; Huang, S. Y.; Wang, F. J.; Xing, Q. X.; Low, T.; Yan, H. G. Determination of layer-dependent exciton binding energies in few-layer black phosphorus. Sci. Adv. 2018, 4, eaap9977.

    Article  Google Scholar 

  24. Xu, D. Y.; Liu, J.; Wang, Y. X.; Jian, Y. Y.; Wu, W. W.; Lv, R. C. Black phosphorus nanosheet with high thermal conversion efficiency for photodynamic/photothermal/immunotherapy. ACS Biomater. Sci. Eng. 2020, 6, 4940–4948.

    Article  CAS  Google Scholar 

  25. Ren, X. N.; Liu, W. L.; Zhou, H. J.; Wei, J. S.; Mu, C. P.; Wan, Y.; Yang, X. Q.; Nie, A. M.; Liu, Z. Y.; Yang, X. L. et al. Biodegradable 2D GeP nanosheets with high photothermal conversion efficiency for multimodal cancer theranostics. Chem Eng J 2022, 431, 134176.

    Article  CAS  Google Scholar 

  26. Li, Z. M.; Yu, Y. K.; Zeng, W. F.; Ding, F.; Zhang, D.; Cheng, W.; Wang, M.; Chen, H. Z.; Pan, G. Q.; Mei, L. et al. Mussel-inspired ligand clicking and ion coordination on 2D black phosphorus for cancer multimodal imaging and therapy. Small 2022, 18, 2201803.

    Article  CAS  Google Scholar 

  27. Song, H. B.; Wang, J.; Xiong, B.; Hu, J. Y.; Zeng, P.; Liu, X. M.; Liang, H. G. Biologically safe, versatile, and smart bismuthene functionalized with a drug delivery system based on red phosphorus quantum dots for cancer theranostics. Angew. Chem., Int. Ed. 2022, 61, e202117679.

    Article  CAS  Google Scholar 

  28. Maleki, A.; He, J. H.; Bochani, S.; Nosrati, V.; Shahbazi, M. A.; Guo, B. L. Multifunctional photoactive hydrogels for wound healing acceleration. ACS Nano 2021, 15, 18895–18930.

    Article  CAS  Google Scholar 

  29. Shahbazi, M. A.; Faghfouri, L.; Ferreira, M. P. A.; Figueiredo, P.; Maleki, H.; Sefat, F.; Hirvonen, J.; Santos, H. A. The versatile biomedical applications of bismuth-based nanoparticles and composites: Therapeutic, diagnostic, biosensing, and regenerative properties. Chem. Soc. Rev. 2020, 49, 1253–1321.

    Article  CAS  Google Scholar 

  30. Wang, X. Z.; Shao, J. D.; Abd El Raouf, M.; Xie, H. H.; Huang, H.; Wang, H. Y.; Chu, P. K.; Yu, X. F.; Yang, Y.; Abdel-Aal, A. M. et al. Near-infrared light-triggered drug delivery system based on black phosphorus for in vivo bone regeneration. Biomaterials 2018, 179, 164–174.

    Article  CAS  Google Scholar 

  31. Qing, Y. A.; Li, R. Y.; Li, S. H.; Li, Y. H.; Wang, X. Y.; Qin, Y. G. Advanced black phosphorus nanomaterials for bone regeneration. Int. J. Nanomedicine 2020, 15, 2045–2058.

    Article  CAS  Google Scholar 

  32. Tan, L.; Li, M. H.; Luo, Z.; Cai, K. Y.; Hu, Y. Black phosphorus biomaterials for photo-controlled bone tissue engineering. Compos. Part B Eng. 2022, 246, 110245.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Project (No. 2021YFA1201404), Key Program of National Natural Science Foundation of China (No. 81730067), Major Project of National Natural Science Foundation of China (No. 81991514), the National Natural Science Foundation of China (No. 82101184), Shenzhen Fundamental Research Program (No. JCYJ20210324102809024), Shenzhen PhD Start-up Program (No. RCBS20210609103713045), Jiangsu Provincial Key Medical Center Foundation, Jiangsu Provincial Medical Outstanding Talent Foundation, Jiangsu Provincial Medical Youth Talent Foundation, Jiangsu Provincial Key Medical Talent Foundation, and the Fundamental Research Funds for the Central Universities (Nos. 14380493 and 14380494).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Kong or Qing Jiang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, S., Liu, R., Song, C. et al. Fish scale-derived scaffolds with MSCs loading for photothermal therapy of bone defect. Nano Res. 16, 7383–7392 (2023). https://doi.org/10.1007/s12274-023-5460-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5460-1

Keywords

Navigation