Skip to main content

Advertisement

Log in

Effects of non-ablative fractional erbium glass laser treatment on gene regulation in human three-dimensional skin models

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Clinical experiences with non-ablative fractional erbium glass laser therapy have demonstrated promising results for dermal remodelling and for the indications of striae, surgical scars and acne scars. So far, molecular effects on human skin following treatment with these laser systems have not been elucidated. Our aim was to investigate laser-induced effects on skin morphology and to analyse molecular effects on gene regulation. Therefore, human three-dimensional (3D) organotypic skin models were irradiated with non-ablative fractional erbium glass laser systems enabling qRT-PCR, microarray and histological studies at same and different time points. A decreased mRNA expression of matrix metalloproteinases (MMPs) 3 and 9 was observed 3 days after treatment. MMP3 also remained downregulated on protein level, whereas the expression of other MMPs like MMP9 was recovered or even upregulated 5 days after irradiation. Inflammatory gene regulatory responses measured by the expression of chemokine (C-X-C motif) ligands (CXCL1, 2, 5, 6) and interleukin expression (IL8) were predominantly reduced. Epidermal differentiation markers such as loricrin, filaggrin-1 and filaggrin-2 were upregulated by both tested laser optics, indicating a potential epidermal involvement. These effects were also shown on protein level in the immunofluorescence analysis. This novel standardised laser-treated human 3D skin model proves useful for monitoring time-dependent ex vivo effects of various laser systems on gene expression and human skin morphology. Our study reveals erbium glass laser-induced regulations of MMP and interleukin expression. We speculate that these alterations on gene expression level could play a role for dermal remodelling, anti-inflammatory effects and increased epidermal differentiation. Our finding may have implications for further understanding of the molecular mechanism of erbium glass laser-induced effects on human skin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig. 3

Similar content being viewed by others

References

  1. Neis MM, Wendel A, Wiederholt T, Marquardt Y, Joussen S, Baron JM, Merk HF (2010) Expression and induction of cytochrome p450 isoenzymes in human skin equivalents. Skin Pharmacol Physiol 23(1):29–39

    Article  CAS  PubMed  Google Scholar 

  2. Cornelissen C, Marquardt Y, Czaja K, Wenzel J, Frank J, Luscher-Firzlaff J, Luscher B, Baron JM (2012) IL-31 regulates differentiation and filaggrin expression in human organotypic skin models. J Allergy Clin Immunol 129(2):426–433, 433 e421-428

    Article  CAS  PubMed  Google Scholar 

  3. Astashkina A, Grainger DW (2014) Critical analysis of 3-D organoid in vitro cell culture models for high-throughput drug candidate toxicity assessments. Adv Drug Deliv Rev 69–70:1–18

    Article  PubMed  Google Scholar 

  4. Mathes SH, Ruffner H, Graf-Hausner U (2014) The use of skin models in drug development. Adv Drug Deliv Rev 69–70:81–102

    Article  PubMed  Google Scholar 

  5. European Centre for the Validation of Alternative Methods (ECVAM). https://eurl-ecvam.jrc.ec.europa.eu/validation-regulatory-acceptance/topical-toxicity/skin-irritation. Accessed 10/28/2015

  6. Marquardt Y, Amann PM, Heise R, Czaja K, Steiner T, Merk HF, Skazik-Voogt C, Baron JM (2015) Characterization of a novel standardized human three-dimensional skin wound healing model using non-sequential fractional ultrapulsed CO2 laser treatments. Lasers Surg Med 47(3):257–265

    Article  PubMed  Google Scholar 

  7. Sardana K, Manjhi M, Garg VK, Sagar V (2014) Which type of atrophic acne scar (ice-pick, boxcar, or rolling) responds to nonablative fractional laser therapy? Dermatol Surg 40(3):288–300

    Article  CAS  PubMed  Google Scholar 

  8. Cho SB, Lee SJ, Cho S, Oh SH, Chung WS, Kang JM, Kim YK, Kim DH (2010) Non-ablative 1550-nm erbium-glass and ablative 10 600-nm carbon dioxide fractional lasers for acne scars: a randomized split-face study with blinded response evaluation. J Eur Acad Dermatol Venereol 24(8):921–925

    Article  CAS  PubMed  Google Scholar 

  9. Taudorf EH, Danielsen PL, Paulsen IF, Togsverd-Bo K, Dierickx C, Paasch U, Haedersdal M (2015) Non-ablative fractional laser provides long-term improvement of mature burn scars—a randomized controlled trial with histological assessment. Lasers Surg Med 47(2):141–147

    Article  PubMed  Google Scholar 

  10. Guimaraes PA, Haddad A, Sabino Neto M, Lage FC, Ferreira LM (2013) Striae distensae after breast augmentation: treatment using the nonablative fractionated 1550-nm erbium glass laser. Plast Reconstr Surg 131(3):636–642

    Article  PubMed  Google Scholar 

  11. Puri N (2013) A study on fractional erbium glass laser therapy versus chemical peeling for the treatment of melasma in female patients. J Cutan Aesthet Surg 6(3):148–151

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lee GY, Lee SJ, Kim WS (2011) The effect of a 1550 nm fractional erbium-glass laser in female pattern hair loss. J Eur Acad Dermatol Venereol 25(12):1450–1454

    Article  PubMed  Google Scholar 

  13. Moneib H, Tawfik AA, Youssef SS, Fawzy MM (2014) Randomized split-face controlled study to evaluate 1550-nm fractionated erbium glass laser for treatment of acne vulgaris—an image analysis evaluation. Dermatol Surg 40(11):1191–1200

    Article  CAS  PubMed  Google Scholar 

  14. Childs J, Altshuler G (2011) XD Microlens™ compression optic for deep-dermis non-ablative fractional treatment. http://www.palomarmedical.com/uploaddocs/xdmicrolenscompressionoptic.pdf. Accessed 04/03/2015

  15. Doherty S, Brooke S, Childs J, Tabatadze D, Erofeev A, Smirnov M, Altshuler G (2011) XF Microlens™ Optic and XD Microlens™ compression optic for non-ablative fractional skin treatment with the Palomar Icon™ System. http://www.palomarmedical.com/uploaddocs/xd_xfpaper2011.pdf. Accessed 04/03/2015

  16. Heise R, Skazik C, Marquardt Y, Czaja K, Sebastian K, Kurschat P, Gan L, Denecke B, Ekanayake-Bohlig S, Wilhelm KP, Merk HF, Baron JM (2012) Dexpanthenol modulates gene expression in skin wound healing in vivo. Skin Pharmacol Physiol 25(5):241–248

    Article  CAS  PubMed  Google Scholar 

  17. Eckhart L, Declercq W, Ban J, Rendl M, Lengauer B, Mayer C, Lippens S, Vandenabeele P, Tschachler E (2000) Terminal differentiation of human keratinocytes and stratum corneum formation is associated with caspase-14 activation. J Invest Dermatol 115(6):1148–1151

    Article  CAS  PubMed  Google Scholar 

  18. Xu LY, Kilmer SL, Ross EV, Avram MM (2015) Bacterial infections following non-ablative fractional laser treatment: a case series and discussion. Lasers Surg Med 47(2):128–132

    Article  PubMed  Google Scholar 

  19. Wang CC, Huang CL, Lee SC, Sue YM, Leu FJ (2013) Treatment of cosmetic tattoos with nonablative fractional laser in an animal model: a novel method with histopathologic evidence. Lasers Surg Med 45(2):116–122

    Article  PubMed  Google Scholar 

  20. Farkas JP, Richardson JA, Hoopman J, Brown SA, Kenkel JM (2009) Micro-island damage with a nonablative 1540-nm Er: glass fractional laser device in human skin. J Cosmet Dermatol 8(2):119–126

    Article  PubMed  Google Scholar 

  21. Danso MO, van Drongelen V, Mulder A, van Esch J, Scott H, van Smeden J, El Ghalbzouri A, Bouwstra JA (2014) TNF-alpha and Th2 cytokines induce atopic dermatitis-like features on epidermal differentiation proteins and stratum corneum lipids in human skin equivalents. J Invest Dermatol 134(7):1941–1950

    Article  CAS  PubMed  Google Scholar 

  22. Wang J, Hori K, Ding J, Huang Y, Kwan P, Ladak A, Tredget EE (2011) Toll-like receptors expressed by dermal fibroblasts contribute to hypertrophic scarring. J Cell Physiol 226(5):1265–1273

    Article  CAS  PubMed  Google Scholar 

  23. Mofikoya BO, Adeyemo WL, Ugburo AO (2012) An overview of biological basis of pathologic scarring. Niger Postgrad Med J 19(1):40–45

    CAS  PubMed  Google Scholar 

  24. Orringer JS, Rittie L, Baker D, Voorhees JJ, Fisher G (2010) Molecular mechanisms of nonablative fractionated laser resurfacing. Br J Dermatol 163(4):757–768

    Article  CAS  PubMed  Google Scholar 

  25. Helbig D, Paasch U (2011) Molecular changes during skin aging and wound healing after fractional ablative photothermolysis. Skin Res Technol 17(1):119–128

    Article  PubMed  Google Scholar 

  26. Shah JM, Omar E, Pai DR, Sood S (2012) Cellular events and biomarkers of wound healing. Indian J Plast Surg 45(2):220–228

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gill SE, Parks WC (2008) Metalloproteinases and their inhibitors: regulators of wound healing. Int J Biochem Cell Biol 40(6–7):1334–1347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fujiwara M, Muragaki Y, Ooshima A (2005) Keloid-derived fibroblasts show increased secretion of factors involved in collagen turnover and depend on matrix metalloproteinase for migration. Br J Dermatol 153(2):295–300

    Article  CAS  PubMed  Google Scholar 

  29. Tsou R, Cole JK, Nathens AB, Isik FF, Heimbach DM, Engrav LH, Gibran NS (2000) Analysis of hypertrophic and normal scar gene expression with cDNA microarrays. J Burn Care Rehabil 21(6):541–550

    Article  CAS  PubMed  Google Scholar 

  30. Wang Q, Dong Y, Geng S, Su H, Ge W, Zhen C (2014) Photodynamic therapy inhibits the formation of hypertrophic scars in rabbit ears by regulating metalloproteinases and tissue inhibitor of metalloproteinase-1. Clin Exp Dermatol 39(2):196–201

    Article  CAS  PubMed  Google Scholar 

  31. Reno F, Grazianetti P, Stella M, Magliacani G, Pezzuto C, Cannas M (2002) Release and activation of matrix metalloproteinase-9 during in vitro mechanical compression in hypertrophic scars. Arch Dermatol 138(4):475–478

    Article  CAS  PubMed  Google Scholar 

  32. Qu L, Liu A, Zhou L, He C, Grossman PH, Moy RL, Mi QS, Ozog D (2012) Clinical and molecular effects on mature burn scars after treatment with a fractional CO(2) laser. Lasers Surg Med 44(7):517–524

    Article  PubMed  Google Scholar 

  33. Ozog DM, Liu A, Chaffins ML, Ormsby AH, Fincher EF, Chipps LK, Mi QS, Grossman PH, Pui JC, Moy RL (2013) Evaluation of clinical results, histological architecture, and collagen expression following treatment of mature burn scars with a fractional carbon dioxide laser. JAMA Dermatol 149(1):50–57

    Article  PubMed  Google Scholar 

  34. Bullard KM, Mudgett J, Scheuenstuhl H, Hunt TK, Banda MJ (1999) Stromelysin-1-deficient fibroblasts display impaired contraction in vitro. J Surg Res 84(1):31–34

    Article  CAS  PubMed  Google Scholar 

  35. Melerzanov A, Lavrov A, Sakania L, Korsunskaya I, Petersen E, Sobelev V (2014) Effects of laser radiation on MMP gene expression in keratinocytes. PRIME J 4(3):39–44

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Philipp M. Amann or Jens M. Baron.

Ethics declarations

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional ethics committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Additional information

Ruth Heise and Jens M. Baron contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amann, P.M., Marquardt, Y., Steiner, T. et al. Effects of non-ablative fractional erbium glass laser treatment on gene regulation in human three-dimensional skin models. Lasers Med Sci 31, 397–404 (2016). https://doi.org/10.1007/s10103-015-1863-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-015-1863-x

Keywords

Navigation