Skip to main content

Advertisement

Log in

Abstract

Background

Tick-borne diseases, caused by bacterial pathogens, pose a growing threat to public health in Europe. This paper provides an overview of the historical context of the discovery of the most impactful pathogens transmitted by ticks, including Borrelia burgdorferi sensu lato, Rickettsia spp., Anaplasma spp., Francisella spp., Ehrlichia spp., and Neoehrlichia mikurensis. Understanding the historical context of their discovery provides insight into the evolution of our understanding of these pathogens.

Methods and results

Systematic investigation of the prevalence and transmission dynamics of these bacterial pathogens is provided, highlighting the intricate relationships among ticks, host organisms, and the environment. Epidemiology is explored, providing an in-depth analysis of clinical features associated with infections. Diagnostic methodologies undergo critical examination, with a spotlight on technological advancements that enhance detection capabilities. Additionally, the paper discusses available treatment options, addressing existing therapeutic strategies and considering future aspects.

Conclusions

By integrating various pieces of information on these bacterial species, the paper aims to provide a comprehensive resource for researchers and healthcare professionals addressing the impact of bacterial tick-borne diseases in Europe. This review underscores the importance of understanding the complex details influencing bacterial prevalence and transmission dynamics to better combat these emerging public health threats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data are disclosed in the paper.

References

  1. Diuk-Wasser MA, VanAcker MC, Fernandez MP (2021) Impact of land use changes and habitat fragmentation on the eco-epidemiology of tick-borne diseases. J Med Entomol 58(4):1546–1564. https://doi.org/10.1093/jme/tjaa209

    Article  PubMed  Google Scholar 

  2. de la Fuente J, Estrada-Peña A, Rafael M, Almazán C, Bermúdez S, Abdelbaset AE, Kasaija PD, Kabi F, Akande FA, Ajagbe DO, Bamgbose T, Ghosh S, Palavesam A, Hamid PH, Oskam CL, Egan SL, Duarte-Barbosa A, Hekimoğlu O, Szabó MPJ, Labruna MB, Dahal A (2023) Perception of Ticks and Tick-Borne Diseases Worldwide. Pathogens 12(10):1258. https://doi.org/10.3390/pathogens12101258

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sykes JE (2023) Tick-Borne Diseases. Vet Clin North Am Small Anim 53(1):141–154. https://doi.org/10.1016/j.cvsm.2022.07.011

    Article  Google Scholar 

  4. Madison-Antenucci S, Kramer LD, Gebhardt LL, Kauffman E (2020) Emerging tick-borne diseases. Clin Microbiol Rev 33(2):10–1128. https://doi.org/10.1128/CMR.00083-18

    Article  Google Scholar 

  5. Pustijanac E, Buršić M, Talapko J, Škrlec I, Meštrović T, Lišnjić D (2023) Tick-Borne Encephalitis Virus: A Comprehensive Review of Transmission, Pathogenesis, Epidemiology, Clinical Manifestations, Diagnosis, and Prevention. Microorganisms 11(7):1634. https://doi.org/10.3390/microorganisms11071634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wolcott KA, Margos G, Fingerle V, Becker NS (2021) Host association of Borrelia burgdorferi sensu lato: A review. Ticks Tick Borne Dis 12(5):101766. https://doi.org/10.1016/j.ttbdis.2021.101766

    Article  PubMed  Google Scholar 

  7. Strnad M, Hönig V, Růžek D, Grubhoffer L, Rego RO (2017) Europe-wide meta-analysis of Borrelia burgdorferi sensu lato prevalence in questing Ixodes ricinus ticks. Appl Environ Microbiol 83(15):e00609-e617. https://doi.org/10.1128/AEM.00609-17

    Article  PubMed  PubMed Central  Google Scholar 

  8. Burgdorfer W, Barbour AG, Hayes SF, Benach JL, Grunwaldt E, Davis JP (1982) Lyme disease—a tick-borne spirochetosis? Science 216(4552):1317–1319. https://doi.org/10.1126/science.7043737

    Article  CAS  PubMed  Google Scholar 

  9. Johnson RC, Schmid GP, Hyde FW, Steigerwalt AG, Brenner DJ (1984) Borrelia burgdorferi sp. nov.: etiologic agent of Lyme disease. Int J Syst Evol 34(4):496–497. https://doi.org/10.1099/00207713-34-4-496

    Article  Google Scholar 

  10. Cabello FC, Embers ME, Newman SA, Godfrey HP (2022) Borreliella burgdorferi antimicrobial-tolerant persistence in Lyme disease and posttreatment Lyme disease syndromes. MBio 13(3):e03440-e3521. https://doi.org/10.1128/mbio.03440-21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Samanta K, Azevedo JF, Nair N, Kundu S, Gomes-Solecki M (2022) Infected Ixodes scapularis Nymphs Maintained in Prolonged Questing under Optimal Environmental Conditions for One Year Can Transmit Borrelia burgdorferi (Borreliella genus novum) to Uninfected Hosts. Microbiol Spectr 10(4):e01377-e1422. https://doi.org/10.1128/spectrum.01377-22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Steinbrink A, Brugger K, Margos G, Kraiczy P, Klimpel S (2022) The evolving story of Borrelia burgdorferi sensu lato transmission in Europe. Parasitol Res 121(3):781–803. https://doi.org/10.1007/s00436-022-07445-3

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wodecka B, Kolomiiets V (2023) Genetic Diversity of Borreliaceae Species Detected in Natural Populations of Ixodes ricinus Ticks in Northern Poland. Life 13(4):972. https://doi.org/10.3390/life13040972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bengis RG, Leighton FA, Fischer JR, Artois M, Morner T, Tate CM (2004) The role of wildlife in emerging and re-emerging zoonoses. Rev Sci Tech- Off Int Epizoot. 23(2):497–512

    CAS  Google Scholar 

  15. Aguirre AA (2017) Changing patterns of emerging zoonotic diseases in wildlife, domestic animals, and humans linked to biodiversity loss and globalization. ILAR J 58(3):315–318. https://doi.org/10.1093/ilar/ilx035

    Article  CAS  PubMed  Google Scholar 

  16. Stevenson B (2023) The Lyme disease spirochete, Borrelia burgdorferi, as a model vector-borne pathogen: insights on regulation of gene and protein expression. Curr Opin Microbiol 74:102332. https://doi.org/10.1016/j.mib.2023.102332

    Article  CAS  PubMed  Google Scholar 

  17. O’Keeffe KR, Oppler ZJ, Brisson D (2020) Evolutionary ecology of Lyme Borrelia. Infect Genet Evol 85:104570. https://doi.org/10.1016/j.meegid.2020.104570

    Article  PubMed  PubMed Central  Google Scholar 

  18. Troxell B, Yang XF (2013) Metal-dependent gene regulation in the causative agent of Lyme disease. Front Cell Infect 3:79. https://doi.org/10.3389/fcimb.2013.00079

    Article  CAS  Google Scholar 

  19. Kahl O, Gray JS (2023) The biology of Ixodes ricinus with emphasis on its ecology. Ticks Tick Borne Dis 14(2):102114. https://doi.org/10.1016/j.ttbdis.2022.102114

    Article  PubMed  Google Scholar 

  20. Hauck D, Jordan D, Springer A, Schunack B, Pachnicke S, Fingerle V, Strube C (2020) Transovarial transmission of Borrelia spp., Rickettsia spp. and Anaplasma phagocytophilum in Ixodes ricinus under field conditions extrapolated from DNA detection in questing larvae. Parasites Vectors 13:1–11. https://doi.org/10.1186/s13071-020-04049-7

    Article  CAS  Google Scholar 

  21. Comstedt P, Jakobsson T, Bergström S (2011) Global ecology and epidemiology of Borrelia garinii spirochetes. Infect Ecol Epidemiology 1(1):9545. https://doi.org/10.3402/iee.v1i0.9545

    Article  Google Scholar 

  22. Hartfield M, White KJ, Kurtenbach K (2011) The role of deer in facilitating the spatial spread of the pathogen Borrelia burgdorferi. Theor Ecol 4:27–36. https://doi.org/10.1007/s12080-010-0072-2

    Article  Google Scholar 

  23. Radolf J, Caimano M, Stevenson B, Hu LT (2012) Of ticks, mice and men: understanding the dual-host lifestyle of Lyme disease spirochaetes. Nat Rev Microbiol 10:87–99. https://doi.org/10.1038/nrmicro2714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liang FT, Yan J, Mbow ML, Sviat SL, Gilmore RD, Mamula M, Fikrig E (2004) Borrelia burgdorferi changes its surface antigenic expression in response to host immune responses. Infect. Immun. 72(10):5759–5767. https://doi.org/10.1128/IAI.72.10.5759-5767.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xu Q, McShan K, Liang FT (2008) Essential protective role attributed to the surface lipoproteins of Borrelia burgdorferi against innate defences. Mol Microbiol 69(1):15–29. https://doi.org/10.1111/j.1365-2958.2008.06264.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rizzi J, Nilsen IB, Stagge JH, Gisnås K, Tallaksen LM (2018) Five decades of warming: impacts on snow cover in Norway. Hydrol Res 49(3):670–688. https://doi.org/10.2166/nh.2017.051

    Article  Google Scholar 

  27. Hvidsten D, Frafjord K, Gray JS, Henningsson AJ, Jenkins A, Kristiansen BE, Lager M, Rognerud B, Slåtsve AM, Stordal F, Stuen S, Wilhelmsson P (2020) The distribution limit of the common tick, Ixodes ricinus, and some associated pathogens in north-western Europe. Ticks Tick Borne Dis 11(4):101388. https://doi.org/10.1016/j.ttbdis.2020.101388

    Article  CAS  PubMed  Google Scholar 

  28. Burn L, Pilz A, Vyse A, Gutiérrez Rabá AV, Angulo FJ, Tran TMP, Fletcher MA, Gessner BD, Moïsi JC, Stark JH (2023) Seroprevalence of lyme borreliosis in Europe: Results from a systematic literature review (2005–2020). Vector-Borne Zoonotic Dis 23(4):195–220. https://doi.org/10.1089/vbz.2022.0069

    Article  PubMed  PubMed Central  Google Scholar 

  29. Burn L, Tran TMP, Pilz A, Vyse A, Fletcher MA, Angulo FJ, Gessner BD, Moïsi JC, Jodar L, Stark JH (2023) Incidence of Lyme borreliosis in Europe from National Surveillance Systems (2005–2020). Vector-Borne Zoonotic Dis 23(4):156–171. https://doi.org/10.1089/vbz.2022.0071

    Article  PubMed  PubMed Central  Google Scholar 

  30. Cerar T, Strle F, Stupica D, Ruzic-Sabljic E, McHugh G, Steere AC, Strle K (2016) Differences in genotype, clinical features, and inflammatory potential of Borrelia burgdorferi sensu stricto strains from Europe and the United States. Emerg Infect Dis 22(5):818. https://doi.org/10.3201/eid2205.151806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Coburn J, Garcia B, Hu LT, Jewett MW, Kraiczy P, Norris SJ, Skare J (2021) Lyme disease pathogenesis. Curr Issues Mol Biol 42(1):473–518. https://doi.org/10.21775/cimb.042.473

    Article  PubMed  Google Scholar 

  32. Rudenko N, Golovchenko M, Kybicova K et al (2019) Metamorphoses of Lyme disease spirochetes: phenomenon of Borrelia persisters. Parasit Vectors 12(1):237. https://doi.org/10.1186/s13071-019-3495-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yuste RA, Muenkel M, Axarlis K et al (2022) Borrelia burgdorferi modulates the physical forces and immunity signaling in endothelial cells. iScience 25(8):104793. https://doi.org/10.1016/j.isci.2022.104793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Karvonen K, Nykky J, Marjomäki V, Gilbert L (2021) Distinctive evasion mechanisms to allow persistence of Borrelia burgdorferi in different human cell lines. Front microbiol 12:711291. https://doi.org/10.3389/fmicb.2021.711291

    Article  PubMed  PubMed Central  Google Scholar 

  35. Strnad M, Rudenko N, Rego RO (2023) Pathogenicity and virulence of Borrelia burgdorferi. Virulence 14(1):2265015. https://doi.org/10.1080/21505594.2023.2265015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Marques AR, Strle F, Wormser GP (2021) Comparison of Lyme disease in the United States and Europe. Emerg Infect Dis 27(8):2017. https://doi.org/10.3201/eid2708.204763

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ogrinc K, Lusa L, Lotrič-Furlan S, Bogovič P, Stupica D, Cerar T, Ružić-Sabljić E, Strle F (2016) Course and outcome of early European Lyme neuroborreliosis (Bannwarth syndrome): clinical and laboratory findings. Rev Infect Dis 63(3):346–353. https://doi.org/10.1093/cid/ciw299

    Article  CAS  Google Scholar 

  38. Ogrinc K, Maraspin V, Lusa L, Cerar Kišek T, Ružić-Sabljić E, Strle F (2021) Acrodermatitis chronica atrophicans: clinical and microbiological characteristics of a cohort of 693 Slovenian patients. J Intern Med 290(2):335–348. https://doi.org/10.1111/joim.13266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Stinco G, Ruscio M, Bergamo S, Trotter D, Patrone P (2014) Clinical features of 705 Borrelia burgdorferi seropositive patients in an endemic area of northern Italy. Sci World J 414505. https://doi.org/10.1155/2014/414505

  40. Stanek G, Fingerle V, Hunfeld KP, Jaulhac B, Kaiser R, Krause A, Kristoferitsch W, O’Connell S, Ornsetin K, Strle F, Gray J (2011) Lyme borreliosis: clinical case definitions for diagnosis and management in Europe. Clin Microbiol Infect 17(1):69–79. https://doi.org/10.1111/j.1469-0691.2010.03175.x

    Article  CAS  PubMed  Google Scholar 

  41. Guérin M, Shawky M, Zedan A, Octave S, Avalle B, Maffucci I, Padiolleau-Lefèvre S (2023) Lyme borreliosis diagnosis: State of the art of improvements and innovations. BMC Microbiol 23(1):204. https://doi.org/10.1186/s12866-023-02935-5

    Article  PubMed  PubMed Central  Google Scholar 

  42. Harris EK, Harton MR, de Mello Marques MA, Belisle JT, Molins CR, Breuner N, Wormser GP, Gilmore RD (2019) Immunoproteomic analysis of Borrelia miyamotoi for the identification of serodiagnostic antigens. Sci Rep 9(1):16808. https://doi.org/10.1038/s41598-019-53248-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Arnaboldi PM, Katseff AS, Sambir M, Dattwyler RJ (2022) Linear Peptide Epitopes Derived from ErpP, p35, and FlaB in the Serodiagnosis of Lyme Disease. Pathogens 11(8):944. https://doi.org/10.3390/pathogens11080944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Koedel U, Fingerle V, Pfister HW (2015) Lyme neuroborreliosis-epidemiology, diagnosis and management. Nat Rev Neurol 11(8):446–456. https://doi.org/10.1038/nrneurol.2015.121

    Article  PubMed  Google Scholar 

  45. Raffetin A, Saunier A, Bouiller K, Caraux-Paz P, Eldin C, Gallien S, Jouenne R, Belkacem A, Salomon J, Patey O, Talagrand-Reboul E, Jaulhac B, Grillon A (2020) Unconventional diagnostic tests for Lyme borreliosis: a systematic review. Clin Microbiol Infect 26(1):51–59. https://doi.org/10.1016/j.cmi.2019.06.033

    Article  CAS  PubMed  Google Scholar 

  46. Dessau RB, van Dam AP, Fingerle V, Gray J, Hovius JW, Hunfeld KP, Jaulhac B, Kahl O, Kristoferitsch W, Lindgren PE, Markowicz M, Mavin S, Ornstein K, Rupprecht T, Stanek G, Strle F (2018) To test or not to test? Laboratory support for the diagnosis of Lyme borreliosis: a position paper of ESGBOR, the ESCMID study group for Lyme borreliosis. Clin Microbiol Infect 24(2):118–124. https://doi.org/10.1016/j.cmi.2017.08.025

    Article  CAS  PubMed  Google Scholar 

  47. Stanek G, Strle F (2022) The History, Epidemiology, Clinical Manifestations and Treatment of Lyme Borreliosis. In: Hunfeld KP, Gray J (eds) Lyme Borreliosis. Springer, Cham, pp 77–105. https://doi.org/10.1007/978-3-030-93680-8_4

  48. Bézay N, Hochreiter R, Kadlecek V, Wressnigg N, Larcher-Senn J, Klingler A, Dubischar K, Eder-Lingelbach S, Leroux-Roels I, Leroux-Roels G, Bender W (2023) Safety and immunogenicity of a novel multivalent OspA-based vaccine candidate against Lyme borreliosis: a randomised, phase 1 study in healthy adults. Lancet Infect Dis 23(10):1186–1196. https://doi.org/10.1016/S1473-3099(23)00210-4

    Article  PubMed  Google Scholar 

  49. Wilczek CK, Wenderlein J, Hiereth S, Straubinger RK (2022) A Retrospective Study with a Commercial Vaccine against Lyme Borreliosis in Dogs Using Two Different Vaccination Schedules: Characterization of the Humoral Immune Response. Vaccines 11(1):43. https://doi.org/10.3390/vaccines11010043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. El Karkouri K, Ghigo E, Raoult D, Fournier PE (2022) Genomic evolution and adaptation of arthropod-associated Rickettsia. Sci Rep 12(1):3807. https://doi.org/10.1038/s41598-022-07725-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Groß D, Schäfer G (2011) 100th Anniversary of the death of Ricketts: Howard Taylor Ricketts (1871–1910). The namesake of the Rickettsiaceae family. Microbes Infect. 13(1):10–13. https://doi.org/10.1016/j.micinf.2010.09.008

    Article  PubMed  Google Scholar 

  52. De Vito A, Geremia N, Mameli SM, Fiore V, Serra PA, Rocchitta G, Nuvoli S, Spanu A, Lobrano R, Cossu A, Babudieri S, Madeddu G (2020) Epidemiology, clinical aspects, laboratory diagnosis and treatment of rickettsial diseases in the mediterranean area during COVID-19 pandemic: a review of the literature. Mediterr J Hematol Infect Dis 12(1):e2020056. https://doi.org/10.4084/mjhid.2020.056

    Article  PubMed  PubMed Central  Google Scholar 

  53. Rovery C, Brouqui P, Raoult D (2008) Questions on Mediterranean spotted fever a century after its discovery. Emerg Infect Dis 14(9):1360. https://doi.org/10.3201/eid1409.071133

    Article  PubMed  PubMed Central  Google Scholar 

  54. Parola P, Raoult D (2001) Ticks and tickborne bacterial diseases in humans: an emerging infectious threat. Clin Infect Dis 32(6):897–928. https://doi.org/10.1086/319347

    Article  CAS  PubMed  Google Scholar 

  55. Gould DJ, Miesse ML (1954) Recovery of a rickettsia of the spotted fever group from Microtus pennsylvanicus from Virginia. Proc Soc Exp Biol Med 85(4):558–561. https://doi.org/10.3181/00379727-85-209

    Article  CAS  PubMed  Google Scholar 

  56. Blanton LS (2019) The rickettsioses: a practical update. Infect Dis Clin 33(1):213–229. https://doi.org/10.1016/j.idc.2018.10.010

    Article  Google Scholar 

  57. Klein D, Beth-Din A, Cohen R, Lazar S, Glinert I, Zayyad H, Atiya-Nasagi Y (2019) New spotted fever group rickettsia isolate, identified by sequence analysis of conserved genomic regions. Pathogens 9(1):11. https://doi.org/10.3390/pathogens9010011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Raoult D, Fournier PE, Eremeeva M, Graves S, Kelly PJ, Oteo JA, Sekyeova Z, Tamura A, Tarasevich I, Zhang L (2005) Naming of Rickettsiae and rickettsial diseases. Ann N Y Acad Sci 1063(1):1–12. https://doi.org/10.1196/annals.1355.002

    Article  PubMed  Google Scholar 

  59. El Karkouri K, Pontarotti P, Raoult D, Fournier PE (2016) Origin and evolution of rickettsial plasmids. PLoS ONE 11(2):e0147492. https://doi.org/10.1371/journal.pone.0147492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Portillo A, Santibáñez S, García-Álvarez L, Palomar AM, Oteo JA (2015) Rickettsioses in Europe. Microbes Infect 17(11–12):834–838. https://doi.org/10.1016/j.micinf.2015.09.009

    Article  PubMed  Google Scholar 

  61. Spernovasilis N, Markaki I, Papadakis M, Mazonakis N, Ierodiakonou D (2021) Mediterranean spotted fever: current knowledge and recent advances. Infect Dis Trop Med 6(4):172. https://doi.org/10.3390/tropicalmed6040172

    Article  Google Scholar 

  62. Karim S, Kumar D, Budachetri K (2021) Recent advances in understanding tick and rickettsiae interactions. Parasite Immunol 43(5):e12830. https://doi.org/10.1111/pim.12830

    Article  PubMed  Google Scholar 

  63. Walker DH, Ismail N (2008) Emerging and re-emerging rickettsioses: endothelial cell infection and early disease events. Nat Rev Microbiol 6(5):375–386. https://doi.org/10.1038/nrmicro1866

    Article  PubMed  Google Scholar 

  64. Reháçek J (1989) Ecological relationships between ticks and rickettsiae. Eur J Epidemiol 5:407–413. https://doi.org/10.1007/BF00140130

    Article  PubMed  Google Scholar 

  65. Rochlin I, Toledo A (2020) Emerging tick-borne pathogens of public health importance: a mini-review. J Med Microbiol 69(6):781. https://doi.org/10.1099/jmm.0.001206

    Article  PubMed  PubMed Central  Google Scholar 

  66. Medlock JM, Hansford KM, Bormane A, Derdakova M, Estrada-Peña A, George JC, Golovoljova I, Jaenson TGT, Jensen JK, Jensen PM, Kazimirova M, Oteo JA, Papa A, Pfister K, Plantard O, Randolph SE, Rizzoli A, Santos-Silva MM, Sprong H, Vial L, Hendrickx G, Zeller H, Van Bortel W (2013) Driving forces for changes in geographical distribution of Ixodes ricinus ticks in Europe. Parasite Vectors 6:1–11. https://doi.org/10.1186/1756-3305-6-1

    Article  Google Scholar 

  67. Tomassone L, Portillo A, Nováková M, De Sousa R, Oteo JA (2018) Neglected aspects of tick-borne rickettsioses. Parasites Vectors 11:1–11. https://doi.org/10.1186/s13071-018-2856-y

    Article  CAS  Google Scholar 

  68. Sahni A, Fang R, Sahni SK, Walker DH (2019) Pathogenesis of rickettsial diseases: pathogenic and immune mechanisms of an endotheliotropic infection. Annu. Rev. Pathol.: Mech. Dis 14:127–152. https://doi.org/10.1146/annurev-pathmechdis-012418-012800

    Article  CAS  Google Scholar 

  69. Chan YGY, Riley SP, Chen E, Martinez JJ (2011) Molecular basis of immunity to rickettsial infection conferred through outer membrane protein B. Infect Immun 79(6):2303–2313. https://doi.org/10.1128/iai.01324-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Thepparit C, Bourchookarn A, Petchampai N, Barker SA, Macaluso KR (2010) Interaction of Rickettsia felis with histone H2B facilitates the infection of a tick cell line. J Microbiol 156(Pt9):2855. https://doi.org/10.1099/mic.0.041400-0

    Article  CAS  Google Scholar 

  71. Sonenshine DE, Macaluso KR (2017) Microbial invasion vs. tick immune regulation. Front Cell Infect Microbiol 7:390. https://doi.org/10.3389/fcimb.2017.00390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. De la Fuente J, Waterhouse RM, Sonenshine DE, Roe RM, Ribeiro JM, Sattelle DB, Hill CA (2016) Tick genome assembled: new opportunities for research on tick-host-pathogen interactions. Front Cell Infect Microbiol 6:103. https://doi.org/10.3389/fcimb.2016.00103

    Article  PubMed  PubMed Central  Google Scholar 

  73. Socolovschi C, Gaudart J, Bitam I, Huynh TP, Raoult D, Parola P (2012) Why are there so few Rickettsia conorii conorii-infected Rhipicephalus sanguineus ticks in the wild? PLoS Negl Trop Dis 6(6):e1697. https://doi.org/10.1371/journal.pntd.0001697

    Article  PubMed  PubMed Central  Google Scholar 

  74. Parola P, Socolovschi C, Jeanjean L, Bitam I, Fournier PE, Sotto A, Labauge P, Raoult D (2008) Warmer weather linked to tick attack and emergence of severe rickettsioses. PLoS Negl Trop Dis 2(11):e338. https://doi.org/10.1371/journal.pntd.0000338

    Article  PubMed  PubMed Central  Google Scholar 

  75. Palomar AM, Santibáñez P, Mazuelas D, Roncero L, Santibáñez S, Portillo A, Oteo JA (2012) Role of birds in dispersal of etiologic agents of tick-borne zoonoses, Spain, 2009. Emerg Infect Dis 18(7):1188. https://doi.org/10.3201/eid1807.111777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Pascucci I, Di Domenico M, Curini V, Cocco A, Averaimo D, D’Alterio N, Cammà C (2019) Diversity of Rickettsia in ticks collected in Abruzzi and Molise regions (central Italy). Microorganisms 7(12):696. https://doi.org/10.3390/microorganisms7120696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ogden NH, Ben Beard C, Ginsberg HS, Tsao JI (2021) Possible effects of climate change on ixodid ticks and the pathogens they transmit: Predictions and observations. J Med Entomol 58(4):1536–1545. https://doi.org/10.1093/jme/tjaa220

    Article  PubMed  Google Scholar 

  78. Parola P, Paddock CD, Socolovschi C, Labruna MB, Mediannikov O, Kernif AMY, Stenos J, Bitam I, Fournier PE, Raoult D (2013) Update on tick-borne rickettsioses around the world: a geographic approach. Clin Microbiol Rev 26(4):657–702. https://doi.org/10.1128/cmr.00032-13

    Article  PubMed  PubMed Central  Google Scholar 

  79. Parola P, Paddock CD, Raoult D (2005) Tick-borne rickettsioses around the world: emerging diseases challenging old concepts. Clin Microbiol Rev 18(4):719–756. https://doi.org/10.1128/cmr.00032-13

    Article  PubMed  PubMed Central  Google Scholar 

  80. Pennisi MG, Caprì A, Solano-Gallego L, Lombardo G, Torina A, Masucci M (2012) Prevalence of antibodies against Rickettsia conorii, Babesia canis, Ehrlichia canis, and Anaplasma phagocytophilum antigens in dogs from the Stretto di Messina area (Italy). Ticks Tick Borne Dis 3(5–6):315–318. https://doi.org/10.1016/j.ttbdis.2012.10.026

    Article  PubMed  Google Scholar 

  81. Solano-Gallego L, Kidd L, Trotta M, Di Marco M, Caldin M, Furlanello T, Breitschwerdt E (2006) Febrile illness associated with Rickettsia conorii infection in dogs from Sicily. Emerg Infect Dis 12(12):1985. https://doi.org/10.3201/eid1212.060326

    Article  PubMed  PubMed Central  Google Scholar 

  82. Borawski K, Dunaj J, Pancewicz S, Król M, Czupryna P, Moniuszko-Malinowska A (2019) Tick-borne rickettsioses in Europe–a review. Prz. Epidemiol. 73(4):523–530. https://doi.org/10.32394/pe.73.49

    Article  Google Scholar 

  83. Kantsø B, Svendsen CB, Jensen PM, Vennestrøm J, Krogfelt KA (2010) Seasonal and habitat variation in the prevalence of Rickettsia helvetica in Ixodes ricinus ticks from Denmark. Ticks Tick Borne Dis 1(2):101–103. https://doi.org/10.1016/j.ttbdis.2010.01.004

    Article  PubMed  Google Scholar 

  84. Simser JA, Palmer AT, Fingerle V, Wilske B, Kurtti TJ, Munderloh UG (2002) Rickettsia monacensis sp. nov., a spotted fever group Rickettsia, from ticks (Ixodes ricinus) collected in a European city park. Appl Environ Microbiol 9:4559–4566. https://doi.org/10.1128/AEM.68.9.4559-4566.2002

    Article  CAS  Google Scholar 

  85. Renvoisé A, Delaunay P, Blanchouin E, Cannavo I, Cua E, Socolovschi C, Parola P, Raoult D (2012) Urban family cluster of spotted fever rickettsiosis linked to Rhipicephalus sanguineus infected with Rickettsia conorii subsp. caspia and Rickettsia massiliae. Ticks Tick Borne Diseas. 3(5–6):389–392. https://doi.org/10.1016/j.ttbdis.2012.10.008

    Article  Google Scholar 

  86. Marié JL, Davoust B, Socolovschi C, Raoult D, Parola P (2012) Molecular detection of rickettsial agents in ticks and fleas collected from a European hedgehog (Erinaceus europaeus) in Marseilles. France Comp Immunol Microbiol Infect Dis 35(1):77–79. https://doi.org/10.1016/j.cimid.2011.11.005

    Article  PubMed  Google Scholar 

  87. Socolovschi C, Reynaud P, Tahar K, Raoult D, Parola P (2012) Rickettsiae of spotted fever group, Borrelia valaisiana, and Coxiella burnetii in ticks on passerine birds and mammals from the Camargue in the south of France. Ticks Tick Borne Dis 3(5–6):355–360. https://doi.org/10.1016/j.ttbdis.2012.10.019

    Article  PubMed  Google Scholar 

  88. Pokrovskiy VI, Ugleva SV, Shabalina SVE, Pokrovsky VI, Pokrovsky VI, Ugleva SV, Shabalina SV (2011) Comparative characteristics of transmissive fevers in the territory of Astrakhan region (clinicoepidemiological evidence). Ter Arkh 83(11):55–59 (https://ter-arkhiv.ru/0040-3660/article/view/30952)

    Google Scholar 

  89. Angelakis E, Pulcini C, Waton J, Imbert P, Socolovschi C, Edouard S, Dellamonica P, Raoult D (2010) Scalp eschar and neck lymphadenopathy caused by Bartonella henselae after tick bite. Clin Infect Dis 50(4):549–551. https://doi.org/10.1086/650172

    Article  PubMed  Google Scholar 

  90. Guccione C, Rubino R, Colomba C, Anastasia A, Caputo V, Iaria C, Cascio A (2022) Rickettsiosis with Pleural Effusion: A Systematic Review with a Focus on Rickettsiosis in Italy. Trop Med Infect Dis 7(1):11. https://doi.org/10.3390/tropicalmed7010011

    Article  PubMed  PubMed Central  Google Scholar 

  91. Balážová A, Földvári G, Bilbija B, Nosková E, Široký P (2022) High prevalence and low diversity of Rickettsia in Dermacentor reticulatus ticks. Central Europe Emerg Infect Dis 28(4):893. https://doi.org/10.3201/eid2804.211267

    Article  PubMed  Google Scholar 

  92. Brouqui P, Parola P, Fournier PE, Raoult D (2007) Spotted fever rickettsioses in southern and eastern Europe. FEMS Microbiol Immunol 49(1):2–12. https://doi.org/10.1111/j.1574-695X.2006.00138.x

    Article  CAS  Google Scholar 

  93. Duh D, Punda-Polic V, Avsic-Zupanc T, Bouyer D, Walker DH, Popov VL, Jelovsek MG, Trilar T, Bradaric N, Krutti TJ, Strus J (2010) Rickettsia hoogstraalii sp. nov., isolated from hard-and soft-bodied ticks. Int J Syst Evol Microbiol 60(4):977–984. https://doi.org/10.1099/ijs.0.011049-0

    Article  PubMed  Google Scholar 

  94. Raoult D, Roux V (1997) Rickettsioses as paradigms of new or emerging infectious diseases. Clin Microbiol Rev 10(4):694–719. https://doi.org/10.1128/cmr.10.4.694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Millán J, Proboste T, de Mera IGF, Chirife AD, de la Fuente J, Altet L (2016) Molecular detection of vector-borne pathogens in wild and domestic carnivores and their ticks at the human–wildlife interface. Ticks Tick Borne Dis 7(2):284–290. https://doi.org/10.1016/j.ttbdis.2015.11.003

    Article  PubMed  Google Scholar 

  96. La Scola B, Raoult D (1997) Laboratory diagnosis of rickettsioses: current approaches to diagnosis of old and new rickettsial diseases. J Clin Microbiol 35(11):2715–2727. https://doi.org/10.1128/jcm.35.11.2715-2727.1997

    Article  PubMed  PubMed Central  Google Scholar 

  97. Rovery C, Raoult D (2008) Mediterranean spotted fever. Infect Dis Clin N Am 22(3):515–530. https://doi.org/10.1016/j.idc.2008.03.003

    Article  Google Scholar 

  98. Demeester R, Claus M, Hildebrand M, Vlieghe E, Bottieau E (2010) Diversity of life-threatening complications due to Mediterranean spotted fever in returning travelers. J Travel Med 17(2):100–104. https://doi.org/10.1111/j.1708-8305.2009.00391.x

    Article  PubMed  Google Scholar 

  99. Baltadzhiev IG, Popivanova NI (2012) Some epidemiological features of the Mediterranean spotted fever re-emerging in Bulgaria. Folia Med (Plovdiv) 54(1):36–43. https://doi.org/10.2478/v10153-011-0076-8

    Article  PubMed  Google Scholar 

  100. De Sousa R, França A, Nòbrega SD, Belo A, Amaro M, Abreu T, Pocas J, Proenca P, Vaz J, Torgal J, Bacellar F, Ismail N, Walker DH (2008) Host-and microbe-related risk factors for and pathophysiology of fatal Rickettsia conorii infection in Portuguese patients. J Infect Dis 198(4):576–585. https://doi.org/10.1086/590211

    Article  PubMed  Google Scholar 

  101. Germanakis A, Psaroulaki A, Gikas A, Tselentis Y (2006) Mediterranean spotted fever in Crete, Greece: clinical and therapeutic data of 15 consecutive patients. Ann N Y Acad Sci 1078(1):263–269. https://doi.org/10.1111/j.1469-0691.2009.02910.x

    Article  CAS  PubMed  Google Scholar 

  102. Colomba C, Trizzino M, Giammanco A, Bonura C, Di Bona D, Tolomeo M, Cascio A (2017) Israeli Spotted Fever in Sicily. Description of two cases and minireview. Int J Infect Dis 61:7–12. https://doi.org/10.1128/jcm.43.12.6027-6031.2005

    Article  PubMed  Google Scholar 

  103. Cohen R, Babushkin F, Shapiro M, Uda M, Atiya-Nasagi Y, Klein D, Finn T (2018) Two cases of Israeli spotted fever with purpura fulminans, Sharon District. Israel Emerg Infect Dis 24(5):835. https://doi.org/10.3201/eid2405.171992

    Article  PubMed  Google Scholar 

  104. Oteo JA, Portillo A (2012) Tick-borne rickettsioses in Europe. Ticks Tick Borne Dis 3(5–6):271–278. https://doi.org/10.1016/j.ttbdis.2012.10.035

    Article  PubMed  Google Scholar 

  105. Madeddu G, Mancini F, Caddeo A, Ciervo A, Babudieri S, Maida I, Fiori MA, Rezza G, Mura MS (2012) Rickettsia monacensis as cause of Mediterranean spotted fever–like illness. Italy Emerg Infect Dis 18(4):702. https://doi.org/10.3201/eid1804.111583

    Article  PubMed  Google Scholar 

  106. Jado I, Oteo JA, Aldámiz M, Gil H, Escudero R, Ibarra V, Portu J, Portillo A, Lezaun MJ, Garcia-Amit C, Rodriguez-Moreno I, Anda P (2007) Rickettsia monacensis and human disease. Spain Emerg Infect Dis 13(9):1405. https://doi.org/10.3201/eid1309.060186

    Article  CAS  PubMed  Google Scholar 

  107. Maleev VV, KhM G, Lazareva EN, Poliakova AM, Astrina OS, Kudriavtsev VA, Arshba TE (2009) Hemostatic disorders and their implication in the pathogenesis of Astrakhan rickettsial fever. Ter Arkh 81(11):32–35

    CAS  PubMed  Google Scholar 

  108. Torina A, de Mera IGF, Alongi A, Mangold AJ, Blanda V, Scarlata F, Di Marco V, de la Fuente J (2012) Rickettsia conorii Indian tick typhus strain and R. slovaca in humans. Sicily Emerg Infect Dis 18(6):1008. https://doi.org/10.3201/eid1806.110966

    Article  PubMed  Google Scholar 

  109. Parola P, Rovery C, Rolain JM, Brouqui P, Davoust B, Raoult D (2009) Rickettsia slovaca and R. raoultii in tick-borne rickettsioses. Emerg Infect Dis 15(7):1105. https://doi.org/10.3201/eid1507.081449

    Article  PubMed  PubMed Central  Google Scholar 

  110. Dubourg G, Socolovschi C, Del Giudice P, Fournier PE, Raoult D (2014) Scalp eschar and neck lymphadenopathy after tick bite: an emerging syndrome with multiple causes. Eur J Clin Microbiol Infect Dis 33:1449–1456. https://doi.org/10.1007/s10096-014-2090-2

    Article  CAS  PubMed  Google Scholar 

  111. Drancourt M, George F, Brouqui P, Sampol J, Raoult D (1992) Diagnosis of Mediterranean spotted fever by indirect immunofluorescence of Rickettsia conorii in circulating endothelial cells isolated with monoclonal antibody-coated immunomagnetic beads. J Infect Dis 166(3):660–663. https://doi.org/10.1093/infdis/166.3.660

    Article  CAS  PubMed  Google Scholar 

  112. Stewart AG, Stewart AG (2021) An update on the laboratory diagnosis of Rickettsia spp. infection. Pathogens 10(10):1319. https://doi.org/10.3390/pathogens10101319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Bouyer DH, Walker DH (2015) Rickettsia and Orientia. In: Manual of Clinical Microbiology, 11th edition, American Society of Microbiology pp 1122–34.

  114. Paris DH, Dumler JS (2016) State of the art of diagnosis of rickettsial diseases: the use of blood specimens for diagnosis of scrub typhus, spotted fever group rickettsiosis, and murine typhus. Curr Opin Infect Dis 29(5):433–439. https://doi.org/10.1097/QCO.0000000000000298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Bai PSP (2015) Laboratory diagnosis of rickettsial infections. J Pediatr Infect Dis 7(3):85–87. https://doi.org/10.1016/j.pid.2015.12.002

    Article  Google Scholar 

  116. Abdad MY, Abou Abdallah R, Fournier PE, Stenos J, Vasoo S (2018) A concise review of the epidemiology and diagnostics of rickettsioses: Rickettsia and Orientia spp. J Clin Microbiol 56(8):10–1128. https://doi.org/10.1128/jcm.01728-17

    Article  CAS  Google Scholar 

  117. Botelho-Nevers E, Socolovschi C, Raoult D, Parola P (2012) Treatment of Rickettsia spp infections: a review. Expert Rev Anti Infect Ther. 10(12):1425–1437. https://doi.org/10.1586/eri.12.139

    Article  CAS  PubMed  Google Scholar 

  118. Chapman AS (2006) Diagnosis and management of tickborne rickettsial diseases; Rocky Mountain spotted fever, ehrlichioses, and anaplasmosis - United States: a practical guide for physicians and other health-care and public health professional. https://stacks.cdc.gov/view/cdc/6709 Accessed 04 December 2023

  119. Colomba C, Saporito L, Polara VF, Rubino R, Titone L (2006) Mediterranean spotted fever: clinical and laboratory characteristics of 415 Sicilian children. BMC Infect Dis 6:1–5. https://doi.org/10.1186/1471-2334-6-60

    Article  Google Scholar 

  120. Osterloh A (2020) The neglected challenge: Vaccination against rickettsia. PLoS Negl Trop Dis 14(10):e0008704. https://doi.org/10.1371/journal.pntd.0008704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Rego RO, Trentelman JJ, Anguita J, Nijhof AM, Sprong H, Klempa B, Hajdusek O, Tomas-cortazar J, Azagi T, Strnad M, Knorr S, Sima R, Jalovecka M, Havlikova SA, Lickova M, Slavikova M, Kopacek P, Grubhopper L, Hovius JW (2019) Counterattacking the tick bite: towards a rational design of anti-tick vaccines targeting pathogen transmission. Parasites Vectors 12(1):1–20. https://doi.org/10.1186/s13071-019-3468-x

    Article  Google Scholar 

  122. Celli J, Zahrt TC (2013) Mechanisms of Francisella tularensis intracellular pathogenesis. Cold Spring Harb Perspect Med 3(4):a010314. https://doi.org/10.1101/cshperspect.a010314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Anthony LD, Burke RD, Nano FE (1991) Growth of Francisella spp. in rodent macrophages. Infect Immun. 59(9):3291–3296. https://doi.org/10.1128/iai.59.9.3291-3296.1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Hajjar AM, Harvey MD, Shaffer SA, Goodlett DR, Sjöstedt A, Edebro H, Forsman M, Byström M, Pelletier M, Wilson CB, Miller SI, Skerrett SJ, Ernst RK (2006) Lack of in vitro and in vivo recognition of Francisella tularensis subspecies lipopolysaccharide by Toll-like receptors. Infect Immun 74(12):6730–6738. https://doi.org/10.1128/iai.00934-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Hollis DG, Weaver RE, Steigerwalt AG, Wenger JD, Moss CW, Brenner DJ (1989) Francisella philomiragia comb nov (formerly Yersinia philomiragia) and Francisella tularensis biogroup novicida (formerly Francisella novicida) associated with human disease. J Clin Microbiol 27(7):1601–1608. https://doi.org/10.1128/jcm.27.7.1601-1608.1989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Gürcan S (2014) Epidemiology of tularemia Balkan Med J 31(1):3–10. https://doi.org/10.5152/balkanmedj.2014.13117

    Article  PubMed  Google Scholar 

  127. McCoy GW, Chapin CW (1912) Further Observations on a Plague-Like Disease of Rodents with a Preliminary Note on the Causative Agent. Bacterium tularense. J. Infect. Dis. 10(1):61–72 (http://www.jstor.org/stable/30071893)

    Article  Google Scholar 

  128. McCoy GW, Chapin CW (1912) Bacterium tularense the cause of a plaguelike disease of rodents. Publ Health Bull 53:17–23

    Google Scholar 

  129. Kleim P, Johansson A, Wagner DM (2007) Molecular Epidemiology, Evolution, and Ecology of Francisella. Ann N Y Acad Sci 1101:30–66. https://doi.org/10.1196/annals.1409.011

    Article  CAS  Google Scholar 

  130. Olusfjev NG, Emelyanova OS, Dunayeva TN (1959) Comparative study of strains of B. tularense in the old and new world and their taxonomy. J Hyg Epidemiol Microbiol Immunol 3(2):138–149

    Google Scholar 

  131. Jellison WL (1961) Tularemia and animal populations: ecology and epizoology. J. Wildl. Dis. 17:1–22 (https://www.jstor.org/stable/41711668)

    Google Scholar 

  132. Dennis DT, Inglesby TV, Henderson DA (2001) Tularemia as a biological weapon: Medical and public health management. J Am Med Assoc 285:2763–2773. https://doi.org/10.1001/jama.285.21.2763

    Article  CAS  Google Scholar 

  133. Bahuaud O, Le Brun C, Lemaignen A (2021) Host immunity and F. tularensis: a review of tularemia in immunocompromised patients. Microorganisms 9:2539. https://doi.org/10.3390/microorganisms9122539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Imbimbo C, Karrer U, Wittwer M, Buettcher M (2020) Tularemia in children and adolescents. Pediatr Infect Dis J 39(12):435–438. https://doi.org/10.1097/INF.0000000000002932

    Article  Google Scholar 

  135. Ulu-Kilic A, Gulen G, Sezen F et al (2013) Tularemia in Central Anatolia. Infection 41:391–399. https://doi.org/10.1007/s15010-012-0355-1

    Article  CAS  PubMed  Google Scholar 

  136. Sharma R, Patil RD, Singh B, Chakraborty S, Chandran D, Dhama K, Gopinath D, Jairath G, Rialch A, Mal G, Singh P, Chaicumpa W, Saikumar G (2023) Tularemia - a re-emerging disease with growing concern. Vet Q 43(1):1–16. https://doi.org/10.1080/01652176.2023.2277753

    Article  PubMed  PubMed Central  Google Scholar 

  137. Hopla CE, Hopla AK (1994) Tularemia. In: Beran GW (ed) Handbook of Zoonoses. CRC Press, Boca Raton, FL, pp 113–126

    Google Scholar 

  138. Petersen JM, Mead PS, Schriefer ME (2009) F. tularensis: an arthropod-borne pathogen. Vet Res 40(2):7. https://doi.org/10.1051/vetres:2008045

    Article  PubMed  Google Scholar 

  139. World Health Organization (WHO) (2007) WHO guidelines on tularaemia. Geneva, Switzerland: World Health Organization. https://stacks.cdc.gov/view/cdc/6943 Accessed 6 December 2023

  140. Dryselius R, Hjertqvist M, Mäkitalo S, Lindblom A, Lilja T, Eklöf D, Lindström (2019) A Large outbreak of tularaemia, central Sweden. July to September Euro Surveill 24:1900603. https://doi.org/10.2807/1560-7917.ES.2019.24.42.1900603

    Article  PubMed  Google Scholar 

  141. Reese SM, Dietrich G, Dolan MC, Sheldon SW, Piesman J, Petersen JM (2010) Transmission dynamics of Francisella tularensis subspecies and clades by nymphal Dermacentor variabilis (Acari: Ixodidae). Am J Trop Med Hyg. 83(3):645–652. https://doi.org/10.4269/ajtmh.2010.10-0127

    Article  PubMed  PubMed Central  Google Scholar 

  142. Hopla CE (1974) The ecology of tularemia. Adv Vet Sci Comp Med 18:25–53

    CAS  PubMed  Google Scholar 

  143. Forestal CA, Malik M, Catlett SV, Savitt AG, Benach JL, Sellati TJ, Furie MB (2007) Francisella tularensis Has a Significant Extracellular Phase in Infected Mice. J Infect Dis 196(1):134–137. https://doi.org/10.1086/518611

    Article  PubMed  Google Scholar 

  144. McCaffrey RL, Allen LA (2006) Pivotal Advance: Francisella tularensis LVS evades killing by human neutrophils via inhibition of the respiratory burst and phagosome escape. J Leukoc Biol 80:1224–1230. https://doi.org/10.1189/jlb.0406287

    Article  CAS  PubMed  Google Scholar 

  145. Hall JD, Craven RR, Fuller JR, Pickles RJ, Kawula TH (2007) Francisella tularensis replicates within alveolar type II epithelial cells in vitro and in vivo following inhalation. Infect Immun 75:1034–1039. https://doi.org/10.1128/iai.01254-06

    Article  CAS  PubMed  Google Scholar 

  146. Hall JD, Woolard MD, Gunn BM, Craven RR, Taft-Benz S, Frelinger JA, Kawula TH (2008) Infected-host-cell repertoire and cellular response in the lung following inhalation of Francisella tularensis Schu S4, LVS, or U112. Infect Immun 76:5843–5852. https://doi.org/10.1128/iai.01176-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Rotz LD, Khan AS, Lillibridge SR, Ostroff SM, Hughes JM (2002) Public health assessment of potential biological terrorism agents. Emerg Infect Dis 8(2):225–230. https://doi.org/10.3201/eid0802.010164

    Article  PubMed  PubMed Central  Google Scholar 

  148. Sjöstedt A (2006) Intracellular survival mechanisms of Francisella tularensis, a stealth pathogen. Microbes Infect 8:561–567. https://doi.org/10.1016/j.micinf.2005.08.001

    Article  CAS  PubMed  Google Scholar 

  149. Auwaerter PG, Penn RL (2020) Francisella tularensis (Tularemia). In: Bennet JE, Dolin R, Blaser MJ (eds) Mandell, Douglas, and Bennett’s principles and practice of infectious diseases, 9th edn. Elsevier, Philadelphia, p 2759

    Google Scholar 

  150. Saslaw S, Eigelsbach HT, Prior JA, Wilson HE, Carhart S (1961) Tularemia vaccine study. II Respiratory challenge Arch Intern Med 107:702–714. https://doi.org/10.1001/archinte.1961.03620050068007

    Article  CAS  PubMed  Google Scholar 

  151. Ozanic M, Marecic V, Abu Kwaik Y, Santic M (2015) The divergent intracellular lifestyle of Francisella tularensis in evolutionarily distinct host cells. PLoS Pathog 11(12):e1005208. https://doi.org/10.1371/journal.ppat.1005208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Yeni DK, Büyük F, Ashraf A, Din Shah MS (2021) Tularemia: a re-emerging tick-borne infectious disease. Folia Microbiol 66:1–14. https://doi.org/10.1007/s12223-020-00827-z

    Article  CAS  Google Scholar 

  153. Pavlovsky EN (1966) Natural nidality of transmissible diseases with special reference to the Landscape Epidemiology and Zooanthroponoses. IL Univ. Ill, Press, Urbana

    Google Scholar 

  154. Hestvik G, Warns-Petit E, Smith L, Fox N, Uhlhorn H, Artois M, Gavier-Widen D (2015) The status of tularemia in Europe in a one-health context: A review. Epidemiol Infect 143(10):2137–2160. https://doi.org/10.1017/s0950268814002398

    Article  CAS  PubMed  Google Scholar 

  155. Petersen JM, Mead PS (2018) Tularemia. In: Jameson J, Fauci AS, Kasper DL, Hauser SL, Longo DL, Loscalzo J (eds.) Harrison’s Principles of Internal Medicine, 20e. McGraw Hill Education.

  156. Bush LM (2023) Tularemia (Rabbit Fever; Deer Fly Fever) https://www.msdmanuals.com/home/infections/bacterial-infections-gram-negative-bacteria/tularemia Accessed 05 December 2023

  157. American Veterinary Medical Association website (2003) Tularemia facts. https://www.avma.org/tularemia-facts Accessed 06 December 2023

  158. Centers for Disease Control and Prevention website (2018) https://www.cdc.gov/tularemia/diagnosistreatment/index.html Accessed 04 December 2023

  159. Kelson M, Burnett J, Girgis S, Bakr M (2022) Tularemia: the resurgence of a diagnostic challenge and clinical dilemma in the United States. Cureus 14(7):27363. https://doi.org/10.7759/cureus.27363

    Article  Google Scholar 

  160. Versage JL, Severin D, Chu MC, Petersen JM (2003) Development of a multi target real-time TaqMan PCR assay for enhanced detection of Francisella tularensis in complex specimens. J Clin Microbiol 41:5492–5499. https://doi.org/10.1128/jcm.41.12.5492-5499.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Tärnvik A, Chu MC (2007) New Approaches to Diagnosis and Therapy of Tularemia. Ann N Y Acad Sci 1105:378–404. https://doi.org/10.1196/annals.1409.017

    Article  CAS  PubMed  Google Scholar 

  162. Stock KJ (2006) Chapter 22 – Vaccines. In: Ciottone G (ed) Disaster Medicine, 1st Edition, Mosby Inc., pp 145–151. https://doi.org/10.1016/B978-0-323-03253-7.X5001-8

  163. European Centre for Disease Prevention and Control website (2024) Tularemia https://www.ecdc.europa.eu/en/tularaemia Accessed 22 March 2024

  164. Dumler JS, Barbet AF, Bekker CPJ, Dasch GA, Palmer GH, Ray SC, Rikihisa Y, Furangirwa FR (2001) Reorganization of genera in the families Rickettsiaceae and Anaplasmataceae in the order Rickettsiales: unification of some species of Ehrlichia with Anaplasma, Cowdria with Ehrlichia and Ehrlichia with Neorickettsia, descriptions of six new species combinations and designation of Ehrlichia equi and ‘HGE agent’ as subjective synonyms of Ehrlichia phagocytophila. Int J Syst Evol Microbiol 51:2145–2165. https://doi.org/10.1099/00207713-51-6-2145

    Article  CAS  PubMed  Google Scholar 

  165. Kawahara M, Rikihisa Y, Lin Q, Isogai E, Tahara K, Itagaki A, Hiramitsu Y, Tajima T (2006) Novel genetic variants of Anaplasma phagocytophilum, Anaplasma bovis, Anaplasma centrale, and a novel Ehrlichia sp. in wild deer and ticks on two major islands in Japan. Appl Environ Microbiol 72:1102–1109. https://doi.org/10.1128/AEM.72.2.1102-1109.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Rymaszewska A, Grenda S (2008) Bacteria of the genus Anaplasma – characteristics of Anaplasma and their vectors: a review. Vet Med (Praha) 53:573–584. https://doi.org/10.17221/1861-VETMED

    Article  Google Scholar 

  167. Chochlakis D, Ioannou I, Tselentis Y, Psaroulaki A (2010) Human anaplasmosis and Anaplasma ovis variant. Emerg Infect Dis 16:1031–1032. https://doi.org/10.3201/eid1606.090175

    Article  PubMed  PubMed Central  Google Scholar 

  168. Stuen S, Granquist EG, Silaghi C (2013) Anaplasma phagocytophilum – a widespread multi-host pathogen with highly adaptive strategies. Front Cell Infect Microbiol 3:31. https://doi.org/10.3389/fcimb.2013.00031/full

    Article  PubMed  PubMed Central  Google Scholar 

  169. Tate CM, Howerth EW, Mead DG, Dugan VG, Luttrell MP, Sahora Munderloch UG, Davidson WR, Yabsley JM (2013) Anaplasma odocoilei sp. nov. (Family Anaplasmataceae) from white-tailed deer (Odocoileus virginianus). Ticks Tick Bor Dis 4:110–119. https://doi.org/10.1016/j.ttbdis.2012.09.005

    Article  Google Scholar 

  170. Bastos AD, Mohammed OB, Bennett NC, Petevinos C, Alagaili AN (2015) Molecular detection of novel Anaplasmataceae closely related to Anaplasma platys and Ehrlichia canis in the dromedary camel (Camelus dromedarius). Vet Microbiol 179:310–314. https://doi.org/10.1016/j.vetmic.2015.06.001

    Article  CAS  PubMed  Google Scholar 

  171. Belkahia H, Said MB, Sayahi L, Alberti A, Messadi L (2015) Detection of novel strains genetically related to Anaplasma platys in Tunisian one-humped camels (Camelus dromedarius). J Infect Dev Ctries 9:1117–1125. https://doi.org/10.3855/jidc.6950

    Article  CAS  PubMed  Google Scholar 

  172. Ehounoud CB, Yao KP, Dahmani M, Achi YL, Amanzougaghene N, N’Douba AK, N’Guessan JD, Raoult D, Fenollar F, Mediannikov O (2016) Multiple pathogens including potential new species in tick vectors in Côte d’Ivoire. PLoS Negl Trop Dis 10:e0004367. https://doi.org/10.1371/journal.pntd.0004367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Li H, Zheng Y-C, Ma L, Jia N, Jiang B-G, Jiang RR, Huo G-B, Wang YW, Liu HB, Chu YL, Song YD, Yao NN, Sun T, Zen FY, Dumler S, Jiang JF, Cao W-C (2015) Human infection with a novel tick-borne Anaplasma species in China: a surveillance study. Lancet Infect Dis 15:663–670. https://doi.org/10.1016/S1473-3099(15)70051-4

    Article  PubMed  Google Scholar 

  174. Li Y, Chen Z, Liu Z, Liu J, Yang J, Li Q, Li Y, Lou Y, Yin H (2016) Molecular survey of Anaplasma and Ehrlichia of red deer and sika deer in Gansu, China in 2013. Transbound Emerg Dis 63:228–236. https://doi.org/10.1111/tbed.12335

    Article  Google Scholar 

  175. Guo WP, Tian JH, Lin XD, Ni XB, Chen XP, Liao Y, Yang SY, Dumler JS, Holmes EC, Zang YZ (2016) Extensive genetic diversity of Rickettsiales bacteria in multiple mosquito species. Sci. Rep. 6:38770. https://doi.org/10.1038/srep38770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Dahmani M, Davoust B, Tahir D, Raoult D, Fenollar F, Mediannikov O (2017) Molecular investigation and phylogeny of Anaplasmataceae species infecting domestic animals and ticks in Corsica. France Parasit Vectors 10:302. https://doi.org/10.1186/s13071-017-2233-2

    Article  CAS  PubMed  Google Scholar 

  177. Gordon WS, Brownlee A, Wilson DR, MacLeod J (1932) Tick-borne fever (A hitherto undescribed disease of sheep). J Comp Pathol 45:301–307. https://doi.org/10.1016/S0368-1742(32)80025-1

    Article  Google Scholar 

  178. Gordon WS, Brownlee A, Wilson DR (1940) Studies in louping-ill, tick-borne fever and scrapie, in Proceedings: 3d International Congress of Microbiology, New York, NY, USA, 2–9 September 1939; pp 362–363.

  179. Stuen S, Van De Pol I, Bergstrom K, Schouls LM (2020) Identification of Anaplasma phagocytophila (formerly Ehrlichia phagocytophila) variants in blood from sheep in Norway. J. Clin. Microbiol. 40:3192–3197. https://doi.org/10.1128/jcm.40.9.3192-3197.2002

    Article  Google Scholar 

  180. Dehhaghi M, Panahi HKS, Holmes EC, Hudson BJ, Guillemin Gilles J (2019) Human Tick-borne diseases in Australia. Front Cell Infect Microbiol 9:3. https://doi.org/10.3389/fcimb.2019.00003

    Article  PubMed  PubMed Central  Google Scholar 

  181. Estrada- Peña A, Mihalca AD, Petney TN (2017) Ticks of Europe and North. Africa-A Guide to Species Identification. Springer International Publishing: Cham, Switzerland. https://doi.org/10.1007/978-3-319-63760-0

  182. Chen SM, Dumler JS, Bakken JS, Walker DH (1994) Identification of a granulocytotropic Ehrlichia species as the etiologic agent of human disease. J Clin Microbiol 32(3):589–595. https://doi.org/10.1128/jcm.32.3.589-595.1994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Petrovec M, Lotric Furlan S, Zupanc TA, Strle F, Brouqui P, Roux V, Dumler JS (1997) Human disease in Europe caused by a granulocytic Erlichia species. J Clin Microbiol 35(6):1556–1559. https://doi.org/10.1128/jcm.35.6.1556-1559.1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Woldehiwet Z (2010) The natural history of Anaplasma phagocytophilum. Vet Parasitol 167(2–4):108–122. https://doi.org/10.1016/j.vetpar.2009.09.013

    Article  CAS  PubMed  Google Scholar 

  185. McDiarmid A (1965) Modern trends in animal health and husbandry. Some infectious diseases of free-living wild-life. Brit Vet J 121:245–257. https://doi.org/10.1016/S0007-1935(17)41151-1

    Article  Google Scholar 

  186. Alberdi MP, Walker AR, Urquhart KA (2000) Field evidence that roe deer (Caprioles carpeolus) are natural host for Ehrlichia phagocytophila. Epidemiol Infect 124:315–323. https://doi.org/10.1017/S0950268899003684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Stuen S, Engvall EO, Van de Pol I, Schoouls LM (2001) Granulocytic ehrlichiosis in a roe deer calf in Norway. J Wildlife Dis 37:614–616. https://doi.org/10.7589/0090-3558-37.3.614

    Article  CAS  Google Scholar 

  188. Jenkins A, Handeland K, Stuen S, Schouls L, van de Pol I, Meen R, Kristiansen BE (2001) Ehrlichiosis in a moose calf in Norway. J Wildlife Dis 37:201–203. https://doi.org/10.7589/0090-3558-37.1.201

    Article  CAS  Google Scholar 

  189. Petrovec M, Bidovec A, Avsic-Zupanc T, Koren S, Sumner JW, Nocholson WL, Childs JE (2000) Infection with Anaplasma phagocytophila in cervids from Slovenia: evidence of two genotypic lineages. Wien Klin Wochenschr 114:641–647

    Google Scholar 

  190. Liz JS, Sumner JW, Pfister K, Brossard M (2002) PCR detection of and serological evidence of granulocytic Ehrlichia; infection in roe deer (Capreolus capreolus) and chamois (Rupicapra rupicapra). J Clin Microbiol 40:892–897. https://doi.org/10.1128/jcm.40.3.892-897.2002

    Article  PubMed  PubMed Central  Google Scholar 

  191. Polin H, Hufnagl P, Haunschmid R, Gruber F, Ladurner G (2004) Molecular evidence of Anaplasma phagocytophilum in Ixodes ricinus ticks and wild animals in Austria. J Clin Microbiol 42:2285–2286. https://doi.org/10.1128/jcm.42.5.2285-2286.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Rojero-Vázquez E, Gordillo-Pérez G, Weber M (2017) Infection of Anaplasma phagocytophilum and Ehrlichia spp. In Opossums and Dogs in Campeche, Mexico: The Role of Tick Infestation. Front Ecol Evol 5:297911. https://doi.org/10.3389/fevo.2017.00161

    Article  Google Scholar 

  193. Dumler SJ, Choi KS, Garcia-Garcia JC, Barat NS, Scorpio DG, Garyu JW, Grab DJ, Bakken JS (2005) Human granulocytic anaplasmosys and Anaplasma phagocytophyllum. Emerging Infect Dis 11(12):1828–1834. https://doi.org/10.3201/eid1112.050898

    Article  Google Scholar 

  194. Ross DE, Levin ML (2004) Effects of Anaplasma phagocytophilum infection on the molting success of Ixodes scapularis (Acari: Ixodidae) larvae. J Med Entomol 41(3):476–483. https://doi.org/10.1603/0022-2585-41.3.476

    Article  PubMed  Google Scholar 

  195. Dunning Hotopp JC, Lin M, Madupu R, Crabtree J, Angiuolt SV, Eisen J, Seshadri R, Ren Q, Wu M, Utterback T, Smith S, Lewis M, Khouri H, Zhang C, Niu H, Lin Q, Ohashi N, Zhi N, Nelson W, Brinkac LM, Dodson RJ, Rosovitz MJ, Sundaram J, Daugherty SC, Davidsen T, Durkin AS, Gwinnm M, Haft DH, Selengut JD, Sullivan SA, Zafar N, Zhou L, Benahmed F, Forberger H, Halpin R, Mulligan S, Robinson J, White O, Rikihisa Y, Tettelin H (2006) Comparative genomics of emerging human ehrlichiosis agents. PloS Genet 2(2):e21. https://doi.org/10.1371/journal.pgen.0020213

    Article  PubMed  PubMed Central  Google Scholar 

  196. Sukumaran B, Narasimhan S, Anderson JF, DePonte K, Marc Antonio N, Krishnan MN, Fish D, Telford SR, Cantor FS, Fikrig E (2006) An Ixodes scapularis protein required for survival of Anaplasma phagocytophilum in tick salivary glands. J Exp Med 203:1507–1517. https://doi.org/10.1084/jem.20060208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Foley J, Nieto N (2007) Anaplasma phagocytophilum subverts tick salivary gland proteins. Trends Parasitol 23:3–5. https://doi.org/10.1016/j.pt.2006.10.003

    Article  CAS  PubMed  Google Scholar 

  198. Atif FA (2015) Anaplasma marginale and Anaplasma phagocytophilum: Rickettsiales pathogens of veterinary and public health significance. Parasitol Res 114:3941–3957. https://doi.org/10.1007/s00436-015-4698-2

    Article  PubMed  Google Scholar 

  199. Dugat T, Lagree AC, Maillard R, Boulouis HJ, Haddad N (2015) Opening the black box of Anaplasma phagocytophilum diversity: current situation and future perspectives. Front Cell Infect Microbiol 5:61. https://doi.org/10.3389/fcimb.2015.00061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Jahfari S, Coipan EC, Fonville M, van Leeuwen AD, Hengeveld P, Heylen D, Heyman P, van Maanen C, Butler CM, Földvári G, Szekeres S, van Duijvendijk G, Tack W, Rijks JM, van der Giessen J, Takken W, van Wieren SE, Takumi K, Sprong H (2014) Circulation of four Anaplasma phagocytophilum ecotypes in Europe. Parasit Vectors 7:365. https://doi.org/10.1186/1756-3305-7-365

    Article  PubMed  PubMed Central  Google Scholar 

  201. Alberti A, Zobba R, Chessa B, Addis MF, Sparagano O, Pinna Parpaglia ML, Cubeddu T, Pintori G, Pittau M (2005) Equine and canine Anaplasma phagocytophilum strains isolated on the island of Sardinia (Italy) are phylogenetically related to pathogenic strains from the United States. Appl Environ Microbiol 71:6418–6422. https://doi.org/10.1128/AEM.71.10.6418-6422.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Stigum VM, Jaarsma RI, Sprong H, Rolandsen CM, Mysterud A (2019) Infection prevalence and ecotypes of Anaplasma phagocytophilum in moose Alces alces, red deer Cervus elaphus, roe deer Capreolus capreolus and Ixodes ricinus ticks from Norway. Parasit Vectors 12:1. https://doi.org/10.1186/s13071-018-3256-z

    Article  PubMed  PubMed Central  Google Scholar 

  203. Rejmanek D, Foley P, Barbet A, Foley J (2012) Evolution of antigen variation in the tick-borne pathogen Anaplasma phagocytophilum. Mol Biol Evol 29:391–400. https://doi.org/10.1093/molbev/msr229

    Article  CAS  PubMed  Google Scholar 

  204. Bown KJ, Lambin X, Ogden NH, Petrovec M, Shaw SE, Woldehiwet Z, Birtles RJ (2007) High-resolution genetic fingerprinting of European strains of Anaplasma phagocytophilum by use of multilocus variable-number tandem-repeat analysis. J Clin Microbiol 45:1771–1776. https://doi.org/10.1128/JCM.00365-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Wang F, Yan M, Liu A, Chen T, Luo L, Li L, Teng Z, Li B, Ji Z, Jian M, Ding Z, Wen S, Zhang Y, Yue P, Cao W, Xu X, Zhou G, Bao F (2020) The seroprevalence of Anaplasma phagocytophilum in global human populations: A systematic review and meta-analysis. Transbound Emerg Dis 67(5):2050–2064. https://doi.org/10.1111/tbed.13548

    Article  PubMed  Google Scholar 

  206. Beltrame A, Ruscio M, Arzese A, Rorato G, Negri C, Londero A, Viale P (2006) Human granulocytic anaplasmosis in northeastern Italy. Ann N Y Acad Sci 1078:106–109. https://doi.org/10.1196/annals.1374.015

    Article  PubMed  Google Scholar 

  207. Jore S, Vanwambeke SO, Viljugrein H, Isaksen K, Kristoffersen AB, Woldehiwet Johansen B, Brun E, Brun-Hansen H, Westermann S, Larsen IL, Ytrehus B, Hofshagen M (2014) Climate and environmental change drives Ixodes ricinus geographical expansion at the northern range margin. Parasit Vectors 7:11. https://doi.org/10.1186/1756-3305-7-11

    Article  PubMed  PubMed Central  Google Scholar 

  208. Myczka AW, Szewczyk T, Laskowski Z (2022) The Occurrence of Zoonotic Anaplasma phagocytophilum Strains, in the Spleen and Liver of Wild Boars from North-West and Central Parts of Poland. Acta Parasitol 66:1082–1085. https://doi.org/10.1007/s11686-021-00368-6

    Article  CAS  Google Scholar 

  209. Masuzawa T, Uchishima Y, Fukui T, Okamoto Y, Muto M, Koizumi N, Yamada A (2011) Detection of Anaplasma phagocytophilum from Wild Boars and Deer in Japan. Jpn J Infect Dis 64:333–336. https://doi.org/10.7883/yoken.64.333

    Article  PubMed  Google Scholar 

  210. Kazimírová M, Hamšíková Z, Špitalská E, Minichová L, Mahríková L, Caban R, Sprong H, Fonville M, Schnittger L, Kocianová E (2018) Diverse tick-borne microorganisms identified in free-living ungulates in Slovakia. Parasit Vectors 11:495. https://doi.org/10.1186/s13071-018-3068-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Myczka AW, Kaczor S, Filip-Hutsch K, Czopowicz M, Plis-Kuprianowicz E, Laskowski Z (2022) Prevalence and Genotyping of Anaplasma phagocytophilum Strains from Wild Animals, European Bison (Bison bonasus) and Eurasian Moose (Alces alces) in Poland. Animals 12(9):1222. https://doi.org/10.3390/ani12091222

    Article  PubMed  PubMed Central  Google Scholar 

  212. Rikihisa Y (2011) Mechanisms of obligatory intracellular infection with Anaplasma phagocytophilum. Clin Microbiol Rev 24:469–489. https://doi.org/10.1128/cmr.00064-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Bakken JS, Dumler JS (2006) Clinical diagnosis and treatment of human granulocytotropic anaplasmosis. Ann N Y Acad Sci 1078:236–247. https://doi.org/10.1196/annals.1374.042

    Article  CAS  PubMed  Google Scholar 

  214. Ismail N, Bloch KC, McBride JW (2010) Human ehrlichiosis and anaplasmosis. Clin Lab Med 30(1):261–292. https://doi.org/10.1016/j.cll.2009.10.004

    Article  PubMed  PubMed Central  Google Scholar 

  215. Lotrič-Furlan S, Petrovec M, Avšič-Županc T, Strle F (2003) Human granulocytic ehrlichiosis in Slovenia. Ann N Y Acad Sci 990:279–284. https://doi.org/10.1111/j.1749-6632.2003.tb07377.x

    Article  PubMed  Google Scholar 

  216. Lagler H, Harrison N, Kussmann M, Obermüller M, Burgmann H, Makristathis A, Ramharter M (2017) Direct detection of Anaplasma phagocytophilum by polymerase chain reaction followed by electrospray ionization mass spectrometry from human blood. Int J Infect Dis 60:61–63. https://doi.org/10.1016/j.ijid.2017.05.006

    Article  CAS  PubMed  Google Scholar 

  217. Lotrič-Furlan S, Petrovec M, Zupanc TA, Nicholson WL, Sumner JW, Childs JE, Strle F (1998) Human granulocytic ehrlichiosis in Europe: clinical and laboratory findings for four patients from Slovenia. Clin Infect Dis 27:424–428. https://doi.org/10.1086/514683

    Article  PubMed  Google Scholar 

  218. Schotthoefer AM, Schrodi SJ, Meece JK, Fritsche TR, Shukla SK (2017) Pro-inflammatory immune responses are associated with clinical signs and symptoms of human anaplasmosis. PLoS ONE 12(6):e0179655. https://doi.org/10.1371/journal.pone.0179655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Bakken JS, Dumler JS (2015) Human granulocytic anaplasmosis. Infect Dis Clin North Am 29(2):341–355. https://doi.org/10.1016/j.idc.2015.02.007

    Article  PubMed  PubMed Central  Google Scholar 

  220. Maurin M, Bakken JS, Dumler JS (2003) Antibiotic susceptibilities of Anaplasma (Ehrlichia) phagocytophilum strains from various geographic areas in the United States. Antimicrob Agents Chemother 47(1):413–415. https://doi.org/10.1128/AAC.47.1.413-415.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Collins NE, Liebenberg J, de Villiers EP, Brayton KA, Louw E, Pretorius A, Faber FE, van Heerden H, Josemans A, van Kleef M, Steyn HC, van Strijp MF, Zweygarth E, Jongejan F, Maillard JC, Berthier D, Botha M, Joubert F, Corton CH, Thomson NR, Allsopp MT, Allsopp BA (2005) The genome of the heartwater agent Ehrlichia ruminantium contains multiple tandem repeats of actively variable copy number. Proc Natl Acad Sci USA 102(3):838–843. https://doi.org/10.1073/pnas.0406633102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Frutos R, Viari A, Ferraz C, Morgat A, Eychenié S, Kandassamy Y, Chantal I, Bensaid A, Coissac E, Vachiery N, Demaille J, Martinez D (2006) Comparative genomic analysis of three strains of Ehrlichia ruminantium reveals an active process of genome size plasticity. J Bacteriol 188(7):2533–2542. https://doi.org/10.1128/JB.188.7.2533-2542.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Walker DH, Dumler JS (1996) Emergence of the ehrlichioses as human health problems. Emerg Infect Dis 2(1):18–29. https://doi.org/10.3201/eid0201.960102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Esemu SN, Ndip LM, Ndip RN (2011) Ehrlichia species, probable emerging human pathogens in sub-Saharan Africa: environmental exacerbation. Rev Environ Health 26(4):269–279. https://doi.org/10.1515/reveh.2011.034

    Article  PubMed  Google Scholar 

  225. Walker DH (2005) Ehrlichia under our noses and no one notices. In: Calisher CH, Peters CJ (eds) Infectious diseases from nature: Mechanisms of viral emergence and persistence. Springer Wien, NewYork, pp 147–156

    Chapter  Google Scholar 

  226. Dawson JE, Anderson BE, Fishbein DB, Sanchez JL, Goldsmith CS, Wilson KH, Duntley CW (1991) Isolation and characterization of an Ehrlichia sp from a patient diagnosed with human ehrlichiosis. J Clin Microbiol. 29(12):2741–2745. https://doi.org/10.1128/jcm.29.12.2741-2745.1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Anderson BE, Dawson JE, Jones DC, Wilson KH (1991) Ehrlichia chaffeensis, a new species associated with human ehrlichiosis. J Clin Microbiol 29(12):2838–2842. https://doi.org/10.1128/jcm.29.12.2838-2842.1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Anderson BE, Sumner JW, Dawson JE, Tzianabos T, Greene CR, Olson JG, Fishbein DB, Olsen-Rasmussen M, Holloway BP, George EH et al (1992) Detection of the etiologic agent of human ehrlichiosis by polymerase chain reaction. J Clin Microbiol 30(4):775–780. https://doi.org/10.1128/jcm.30.4.775-780.1992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Perez M, Bodor M, Zhang C, Xiong Q, Rikihisa Y (2006) Human infection with Ehrlichia canis accompanied by clinical signs in Venezuela. Ann N Y Acad Sci 1078:110–117. https://doi.org/10.1196/annals.1374.016. (Erratum.In:AnnNYAcadSci.2010Nov;1212(1):130.Xiong,Qingmin[correctedtoXiong,Qingming])

    Article  CAS  PubMed  Google Scholar 

  230. Buller RS, Arens M, Hmiel SP, Paddock CD, Sumner JW, Rikhisa Y, Unver A, Gaudreault-Keener M, Manian FA, Liddell AM, Schmulewitz N, Storch GA (1999) Ehrlichia ewingii, a newly recognized agent of human ehrlichiosis. N Engl J Med 341(3):148–155. https://doi.org/10.1056/NEJM199907153410303

    Article  CAS  PubMed  Google Scholar 

  231. McQuiston JH, Paddock CD, Holman RC, Childs JE (1999) The human ehrlichioses in the United States. Emerg Infect Dis 5(5):635–642. https://doi.org/10.3201/eid0505.990504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Allsopp MT, Louw M, Meyer EC (2005) Ehrlichia ruminantium: an emerging human pathogen? Ann N Y Acad Sci 1063:358–360. https://doi.org/10.1196/annals.1355.060

    Article  CAS  PubMed  Google Scholar 

  233. Ganguly S, Mukhopadhayay SK (2008) Tick-borne ehrlichiosis infection in human beings. J Vector Borne Dis 45(4):273–280

    CAS  PubMed  Google Scholar 

  234. Calic SB, Galvão MA, Bacellar F, Rocha CM, Mafra CL, Leite RC, Walker DH (2004) Human ehrlichioses in Brazil: first suspect cases. Braz J Infect Dis 8(3):259–262. https://doi.org/10.1590/s1413-86702004000300011

    Article  PubMed  Google Scholar 

  235. Kawahara M, Ito T, Suto C, Shibata S, Rikihisa Y, Hata K, Hirai K (1999) Comparison of Ehrlichia muris strains isolated from wild mice and ticks and serologic survey of humans and animals with E. muris as antigen. J Clin Microbiol. 37(4):1123–1129. https://doi.org/10.1128/JCM.37.4.1123-1129.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Smith RP (2005) Tick-Borne Diseases of Humans. Emerg Infect Dis 11:1808–1809. https://doi.org/10.3201/eid1111.051160

    Article  PubMed Central  Google Scholar 

  237. Rar V, Golovljova I (2011) Anaplasma, Ehrlichia, and “Candidatus Neoehrlichia” bacteria: pathogenicity, biodiversity, and molecular genetic characteristics, a review. Infect Genet Evol 11(8):1842–1861. https://doi.org/10.1016/j.meegid.2011.09.019

    Article  CAS  PubMed  Google Scholar 

  238. Bjöersdorff A, Bergström S, Massung RF, Haemig PD, Olsen B (2001) Ehrlichia-infected ticks on migrating birds. Emerg Infect Dis 7(5):877–879. https://doi.org/10.3201/eid0705.017517

    Article  PubMed  PubMed Central  Google Scholar 

  239. Springer YP, Johnson PTJ (2018) Large-scale health disparities associated with Lyme disease and human monocytic ehrlichiosis in the United States, 2007–2013. PLoS ONE 13(9):e0204609. https://doi.org/10.1371/journal.pone.0204609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. André MR (2018) Diversity of Anaplasma and Ehrlichia/Neoehrlichia Agents in Terrestrial Wild Carnivores Worldwide: Implications for Human and Domestic Animal Health and Wildlife Conservation. Front Vet Sci 5:293. https://doi.org/10.3389/fvets.2018.00293

    Article  PubMed  PubMed Central  Google Scholar 

  241. Everett ED, Evans KA, Henry RB, McDonald G (1994) Human ehrlichiosis in adults after tick exposure. Diagnosis using polymerase chain reaction. Ann. Intern. Med. 120(9):730–735. https://doi.org/10.7326/0003-4819-120-9-199405010-00002

    Article  CAS  PubMed  Google Scholar 

  242. Ivanova A, Geller J, Katargina O, Värv K, Lundkvist Å, Golovljova I (2017) Detection of Candidatus Neoehrlichia mikurensis and Ehrlichia muris in Estonian ticks. Ticks Tick Borne Dis 8(1):13–17. https://doi.org/10.1016/j.ttbdis.2016.08.010

    Article  PubMed  Google Scholar 

  243. Arnez M, Luznik-Bufon T, Avsic-Zupanc T, Ruzic-Sabljic E, Petrovec M, Lotric-Furlan S, Strle F (2003) Causes of febrile illnesses after a tick bite in Slovenian children. Pediatr Infect Dis J 22(12):1078–1083. https://doi.org/10.1097/01.inf.0000101477.90756.50

    Article  PubMed  Google Scholar 

  244. Topolovec J, Puntarić D, Antolović-Pozgain A, Vuković D, Topolovec Z, Milas J, Drusko-Barisić V, Venus M (2003) Serologically detected “new” tick-borne zoonoses in eastern Croatia. Croat Med J 44(5):626–629

    PubMed  Google Scholar 

  245. Samardzic S, Marinkovic T, Marinkovic D, Djuricic B, Ristanovic E, Simovic T, Lako B, Vukov B, Bozovic B, Gligic A (2008) Prevalence of antibodies to Rickettsiae in different regions of Serbia. Vector Borne Zoonotic Dis 8(2):219–224. https://doi.org/10.1089/vbz.2007.0122

    Article  PubMed  Google Scholar 

  246. Arsić B, Gligić A, Ristanović E, Lako B, Potkonjak A, Perunicić M, Pavlović M (2014) A case of human monocytic ehrlichiosis in Serbia. Srp Arh Celok Lek 142(1–2):79–82. https://doi.org/10.2298/sarh1402079a

    Article  PubMed  Google Scholar 

  247. Paddock CD, Sumner JW, Shore GM, Bartley DC, Elie RC, McQuade JG, Martin CR, Goldsmith CS, Childs JE (1997) Isolation and characterization of Ehrlichia chaffeensis strains from patients with fatal ehrlichiosis. J Clin Microbiol 35(10):2496–2502. https://doi.org/10.1128/jcm.35.10.2496-2502.1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Fishbein DB, Dawson JE, Robinson LE (1994) Human ehrlichiosis in the United States, 1985 to 1990. Ann Intern Med 120(9):736–743. https://doi.org/10.7326/0003-4819-120-9-199405010-00003

    Article  CAS  PubMed  Google Scholar 

  249. Berry DS, Miller RS, Hooke JA, Massung RF, Bennett J, Ottolini MG (1999) Ehrlichial meningitis with cerebrospinal fluid morulae. Pediatr Infect Dis J 18(6):552–525. https://doi.org/10.1097/00006454-199906000-00016

    Article  CAS  PubMed  Google Scholar 

  250. Hulínská D, Kurzová D, Drevová H, Votýpka J (2001) První poznatky o ehrlichióze, prokázané sérologicky a polymerázovou retĕzovou reakcí u pacientů s borreliózou v Ceské republice [First detection of Ehrlichiosis detected serologically and with the polymerase chain reaction in patients with borreliosis in the Czech Republic]. Cas Lek Cesk 140(6):181–184

    PubMed  Google Scholar 

  251. Eng TR, Harkess JR, Fishbein DB, Dawson JE, Greene CN, Redus MA, Satalowich FT (1988) Epidemiologic, clinical, and laboratory findings of human ehrlichiosis in the United States, 1988. JAMA 264(17):2251–2258. https://doi.org/10.1001/jama.1990.03450170099030

    Article  Google Scholar 

  252. Zhang XF, Zhang JZ, Long SW, Ruble RP, Yu XJ (2003) Experimental Ehrlichia chaffeensis infection in beagles. J Med Microbiol 52(11):1021–1026. https://doi.org/10.1099/jmm.0.05234-0

    Article  CAS  PubMed  Google Scholar 

  253. Skotarczak B (2003) Canine ehrlichiosis Ann Agric Environ Med 10(2):137–141

    PubMed  Google Scholar 

  254. Anderson BE, Greene CE, Jones DC, Dawson JE (1992) Ehrlichia ewingii sp. nov., the etiologic agent of canine granulocytic ehrlichiosis. Int. J. Syst. Bacteriol. 42(2):299–302. https://doi.org/10.1099/00207713-42-2-299

    Article  CAS  PubMed  Google Scholar 

  255. Paddock CD, Folk SM, Shore GM, Machado LJ, Huycke MM, Slater LN, Liddell AM, Buller RS, Storch GA, Monson TP, Rimland D, Sumner JW, Singleton J, Bloch KC, Tang YW, Standaert SM, Childs JE (2001) Infections with Ehrlichia chaffeensis and Ehrlichia ewingii in persons coinfected with human immunodeficiency virus. Clin Infect Dis 33(9):1586–1594. https://doi.org/10.1086/323981

    Article  CAS  PubMed  Google Scholar 

  256. Nuti M, Serafini DA, Bassetti D, Ghionni A, Russino F, Rombolà P, Macri G, Lillini E (1998) Ehrlichia infection in Italy. Emerg Infect Dis 4(4):663–665. https://doi.org/10.3201/eid0404.980420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Smetanová K, Boldis V, Kocianová E, Spitalská E (2007) Detection of Ehrlichia muris in a yellow-necked mouse (Apodemus flavicollis) in Central Slovakia. Acta Virol 51(1):69–71

    PubMed  Google Scholar 

  258. Wen B, Rikihisa Y, Mott J, Fuerst PA, Kawahara M, Suto C (1995) Ehrlichia muris sp nov, identified on the basis of 16S rRNA base sequences and serological, morphological, and biological characteristics. Int. J. Syst. Bacteriol. 45(2):250–254. https://doi.org/10.1099/00207713-45-2-250

    Article  CAS  PubMed  Google Scholar 

  259. Yevich SJ, Sánchez JL, DeFraites RF, Rives CC, Dawson JE, Uhaa IJ, Johnson BJ, Fishbein DB (1995) Seroepidemiology of infections due to spotted fever group rickettsiae and Ehrlichia species in military personnel exposed in areas of the United States where such infections are endemic. J Infect Dis 171(5):1266–1273. https://doi.org/10.1093/infdis/171.5.1266

    Article  CAS  PubMed  Google Scholar 

  260. Standaert SM, Yu T, Scott MA, Childs JE, Paddock CD, Nicholson WL, Singleton J Jr, Blaser MJ (2000) Primary isolation of Ehrlichia chaffeensis from patients with febrile illnesses: clinical and molecular characteristics. J Infect Dis 181(3):1082–1088. https://doi.org/10.1086/315346

    Article  CAS  PubMed  Google Scholar 

  261. Childs JE, Sumner JW, Nicholson WL, Massung RF, Standaert SM, Paddock CD (1999) Outcome of diagnostic tests using samples from patients with culture-proven human monocytic ehrlichiosis: implications for surveillance. J Clin Microbiol 37(9):2997–3000. https://doi.org/10.1128/JCM.37.9.2997-3000.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Blevins SM, Greenfield RA, Bronze MS (2008) Blood smear analysis in babesiosis, ehrlichiosis, relapsing fever, malaria, and Chagas disease. Clevel Clin J Med 75(7):521–530. https://doi.org/10.3949/ccjm.75.7.521

    Article  Google Scholar 

  263. Hamilton KS, Standaert SM, Kinney MC (2004) Characteristic peripheral blood findings in human ehrlichiosis. Mod Pathol 17(5):512–517. https://doi.org/10.1038/modpathol.3800075

    Article  PubMed  Google Scholar 

  264. Chen SM, Cullman LC, Walker DH (1997) Western immunoblotting analysis of the antibody responses of patients with human monocytotropic ehrlichiosis to different strains of Ehrlichia chaffeensis and Ehrlichia canis. Clin Diagn Lab Immunol 4(6):731–735. https://doi.org/10.1128/cdli.4.6.731-735.1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Ijdo JW, Wu C, Magnarelli LA, Stafford KC 3rd, Anderson JF, Fikrig E (2000) Detection of Ehrlichia chaffeensis DNA in Amblyomma americanum ticks in Connecticut and Rhode Island. J Clin Microbiol 12:4655–4656. https://doi.org/10.1128/JCM.38.12.4655-4656.2000

    Article  Google Scholar 

  266. Kocan AA, Ewing SA, Stallknecht D, Murphy GL, Little S, Whitworth LC, Barker RW (2000) Attempted transmission of Ehrlichia chaffeensis among white-tailed deer by Amblyomma maculatum. J Wildl Dis 36(3):592–594. https://doi.org/10.7589/0090-3558-36.3.592

    Article  CAS  PubMed  Google Scholar 

  267. Ismail N, McBride JW (2017) Tick-Borne Emerging Infections: Ehrlichiosis and Anaplasmosis. Clin Lab Med 37(2):317–340. https://doi.org/10.1016/j.cll.2017.01.006

    Article  PubMed  Google Scholar 

  268. Pritt BS, Sloan LM, Johnson DK, Munderloh UG, Paskewitz SM, McElroy KM, McFadden JD, Binnicker MJ, Neitzel DF, Liu G, Nicholson WL, Nelson CM, Franson JJ, Martin SA, Cunningham SA, Steward CR, Bogumill K, Bjorgaard ME, Davis JP, McQuiston JH, Warshauer DM, Wilhelm MP, Patel R, Trivedi VA (2009) Eremeeva ME (2011) Emergence of a new pathogenic Ehrlichia species, Wisconsin and Minnesota. N Engl J Med 365(5):422–429. https://doi.org/10.1056/NEJMoa1010493

    Article  Google Scholar 

  269. Biggs HM, Behravesh CB, Bradley KK, Dahlgren FS, Drexler NA, Dumler JS, Folk SM, Kato CY, Lash RR, Levin ML, Massung RF, Nadelman RB, Nicholson WL, Paddock CD, Pritt BS, Traeger MS (2016) Diagnosis and Management of Tickborne Rickettsial Diseases: Rocky Mountain Spotted Fever and Other Spotted Fever Group Rickettsioses, Ehrlichioses, and Anaplasmosis - United States. MMWR Recomm Rep. 65(2):1–44. https://doi.org/10.15585/mmwr.rr6502a1

    Article  PubMed  Google Scholar 

  270. Branger S, Rolain JM, Raoult D (2004) Evaluation of antibiotic susceptibilities of Ehrlichia canis, Ehrlichia chaffeensis, and Anaplasma phagocytophilum by real-time PCR. Antimicrob Agents Chemother 48(12):4822–4828. https://doi.org/10.1128/AAC.48.12.4822-4828.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Morais JD, Dawson JE, Greene C, Filipe AR, Galhardas LC, Bacellar F (1991) First European case of ehrlichiosis. Lancet 338(8767):633–634. https://doi.org/10.1016/0140-6736(91)90644-5

    Article  CAS  PubMed  Google Scholar 

  272. Portillo A, Santibáñez P, Palomar AM, Santibáñez S, Oteo JA (2018) ‘Candidatus Neoehrlichia mikurensis’ in Europe. New Microbes New Infect 22:30–36. https://doi.org/10.1016/j.nmni.2017.12.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Grankvist A, Moore ERB, Stadler LS, Pekova S, Bogdan C, Geißdörfer W, Grip-Lindén J, Brandström K, Marsal J, Andréasson K, Lewerin C, Welinder-Olsson C, Wennerås C (2015) Multilocus Sequence Analysis of Clinical “Candidatus Neoehrlichia mikurensis” Strains from Europe. J Clin Microbiol 53(10):3126–3132. https://doi.org/10.1128/jcm.00880-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Kawahara M, Rikihisa Y, Isogai E et al (2004) Ultrastructure and phylogenetic analysis of ‘Candidatus Neoehrlichia mikurensis’ in the family Anaplasmataceae, isolated from wild rats and found in Ixodes ovatus ticks. Int J Syst Evol Microbiol 54:1837–1843. https://doi.org/10.1099/ijs.0.63260-0

    Article  CAS  PubMed  Google Scholar 

  275. Glatz M, Müllegger RR, Maurer F, Fingerle V, Achermann Y, Wilske B, Bloemberg GV (2014) Detection of Candidatus Neoehrlichia mikurensis, Borrelia burgdorferi sensu lato genospecies and Anaplasma phagocytophilum in a tick population from Austria. Ticks Tick Borne Dis 5(2):139–144. https://doi.org/10.1016/j.ttbdis.2013.10.006

    Article  PubMed  Google Scholar 

  276. Wenneras C (2015) Infections with the tick-borne bacterium Candidatus Neoehrlichia mikurensis. Clin Microbiol Infect 21:621–630. https://doi.org/10.1016/j.cmi.2015.02.030

    Article  CAS  PubMed  Google Scholar 

  277. Grankvist A, Andersson PO, Mattsson M et al (2014) Infections with the tick-borne bacterium “Candidatus Neoehrlichia mikurensis” mimic noninfectious conditions in patients with B cell malignancies or autoimmune diseases. Clin Infect Dis 58:1716–1722. https://doi.org/10.1093/cid/ciu189

    Article  CAS  PubMed  Google Scholar 

  278. Quarsten H, Henningsson A, Krogfelt KA, Strube C, Wennerås C, Mavin S (2023) Tick-borne diseases under the radar in the North Sea Region. Ticks Tick Borne Dis 14(4):102185. https://doi.org/10.1016/j.ttbdis.2023.102185

    Article  PubMed  Google Scholar 

  279. Karbowiak G, Biernat B, Stanczak J, Werszko J, Wróblewski P, Szewczyk T, Sytykiewicz H (2016) The role of particular ticks developmental stages in the circulation of tick-borne pathogens in Central Europe. 4. Anaplasmataceae. Ann Parasitol 62(4):267–284. https://doi.org/10.17420/ap6204.62

    Article  PubMed  Google Scholar 

  280. Movila A, Alekseev AN, Dubinina HV, Toderas I (2013) Detection of tick-borne pathogens in ticks from migratory birds in the Baltic region of Russia. Med Vet Entomol 27(1):113–117. https://doi.org/10.1111/j.1365-2915.2012.01037.x

    Article  CAS  PubMed  Google Scholar 

  281. Obiegala A, Silaghi C (2018) Candidatus Neoehrlichia mikurensis - recent insights and future perspectives on clinical cases, vectors, and reservoirs in Europe. Curr Clin Microbiol Rep 5:1–9. https://doi.org/10.1007/s40588-018-0085-y

    Article  Google Scholar 

  282. Obiegala A, Pfeffer M, Pfister K, Tiedemann T, Thiel C, Balling A, Karnath C, Woll D, Silaghi C (2014) Candidatus Neoehrlichia mikurensis and Anaplasma phagocytophilum: prevalences and investigations on a new transmission path in small mammals and ixodid ticks. Parasit Vectors 7:1–10. https://doi.org/10.1186/s13071-014-0563-x

    Article  Google Scholar 

  283. Burri C, Schumann O, Schumann C, Gern L (2014) Are Apodemus spp. mice and Myodes glareolus reservoirs for Borrelia miyamotoi, Candidatus Neoehrlichia mikurensis, Rickettsia helvetica, R. monacensis and Anaplasma phagocytophilum? Ticks Tick Borne Dis. 5(3):245–251. https://doi.org/10.1016/j.ttbdis.2013.11.007

    Article  CAS  PubMed  Google Scholar 

  284. Tołkacz K, Kowalec M, Alsarraf M, Grzybek M, Dwużnik-Szarek D, Behnke JM, Bajer A (2023) Candidatus Neoehrlichia mikurensis and Hepatozoon sp. in voles (Microtus spp.): occurrence and evidence for vertical transmission. Sci. Rep. 13(1):1733. https://doi.org/10.1038/s41598-023-28346-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Ondruš J, Balážová A, Baláž V, Zechmeisterova K, Novobilsky A, Široky P (2020) Candidatus Neoehrlichia mikurensis is widespread in questing Ixodes ricinus ticks in the Czech Republic. Ticks Tick Borne Dis 11(3):101371. https://doi.org/10.1016/j.ttbdis.2020.101371

    Article  PubMed  Google Scholar 

  286. Welinder-Olsson C, Kjellin E, Vaht K, Jacobsson S, Wennerås C (2010) First case of human “Candidatus Neoehrlichia mikurensis” infection in a febrile patient with chronic lymphocytic leukemia. J Clin Microbiol 48(5):1956–1959. https://doi.org/10.1128/JCM.02423-09

    Article  PubMed  PubMed Central  Google Scholar 

  287. Pekova S, Vydra J, Kabickova H, Frankova S, Haugvicova R, Mazal O, Cmejla R, Hardekopf DW, Jancuskova T, Kozak T (2011) Candidatus Neoehrlichia mikurensis infection identified in 2 hematooncologic patients: benefit of molecular techniques for rare pathogen detection. Diagn Microbiol Infect Dis 69(3):266–270. https://doi.org/10.1016/j.diagmicrobio.2010.10.004

    Article  CAS  PubMed  Google Scholar 

  288. Fehr JS, Bloemberg GV, Ritter C, Hombach M, Luscher TF, Weber R, Keller PM (2010) Septicemia caused by tick-borne bacterial pathogen Candidatus Neoehrlichia mikurensis. Emerg Infect Dis 16(7):1127–1129. https://doi.org/10.3201/eid1607.091907

    Article  PubMed  PubMed Central  Google Scholar 

  289. Schwieger F, Tebbe CC (1998) A new approach to utilize PCR–singlestrand-conformation polymorphism for 16S rRNA gene-based microbial community analysis. Appl Environ Microbiol 64(12):4870–4876. https://doi.org/10.1128/AEM.64.12.4870-4876.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Jahfari S, Fonville M, Hengeveld P, Reusken C, Scholte EJ, Takken W, Heyman P, Meddlock JM, Heylen D, Kleve J, Sprong H (2012) Prevalence of Neoehrlichia mikurensis in ticks and rodents from North-west Europe. Parasit Vectors 5(1):74–83. https://doi.org/10.1186/1756-3305-5-74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Diniz PPV, Schulz BS, Hartmann K, Breitschwerdt EB (2011) “Candidatus Neoehrlichia mikurensis” infection in a dog from Germany. J Clin Microbiol 49(5):2059–62. https://doi.org/10.1128/JCM.02327-10

    Article  PubMed  PubMed Central  Google Scholar 

  292. Hodžić A, Cézanne R, Duscher GG, Harl J, Glawischnig W, Fuehrer HP (2015) Candidatus Neoehrlichia sp. in an Austrian fox is distinct from Candidatus Neoehrlichia mikurensis, but closer related to Candidatus Neoehrlichia lotoris. Parasit. Vectors 8:539. https://doi.org/10.1186/s13071-015-1163-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Wass L, Grankvist A, Bell-Sakyi L, Bergström M, Ulfhammer E, Lingblom C, Wennerås C (2019) Cultivation of the causative agent of human neoehrlichiosis from clinical isolates identifies vascular endothelium as a target of infection. Emerg Microbes & Infect. 8(1):413–425. https://doi.org/10.1080/22221751.2019.1584017

    Article  CAS  Google Scholar 

  294. von Loewenich F, Geissdörfer W, Disqué C, Matten J, Schett G, Sakka SG, Bogdan C (2010) Detection of “Candidatus Neoehrlichia mikurensis” in two patients with severe febrile illnesses: evidence for a European sequence variant. J Clin Microbiol 48:2630–2635. https://doi.org/10.1128/JCM.00588-10

    Article  CAS  Google Scholar 

  295. Höper L, Skoog E, Stenson M, Grankvist A, Wass L, Olsen B, Nilsson K, Mårtensson A, Söderlind J, Sakinis A, Wennerås C (2021) Vasculitis due to Candidatus Neoehrlichia mikurensis: A Cohort Study of 40 Swedish Patients. Clin Infect Dis 73(7):e2372–e2378. https://doi.org/10.1093/cid/ciaa1217

    Article  PubMed  Google Scholar 

  296. Venclíková K, Rudolf I, Mendel J, Betasova L, Hubalek Z (2014) Rickettsiae in questing Ixodes ricinus ticks in the Czech Republic. Ticks Tick Borne Dis 5:135–138. https://doi.org/10.1016/j.ttbdis.2013.09.008

    Article  PubMed  Google Scholar 

  297. Blaňarová L, Stanko M, Miklisová D, Víchová B, Mošanský L, Kraljik J, Bona M, Derdáková M (2016) Presence of Candidatus Neoehrlichia mikurensis and Babesia microti in rodents and two tick species (Ixodes ricinus and Ixodes trianguliceps) in Slovakia. Ticks Tick Borne Dis. 7:319–326. https://doi.org/10.1016/j.ttbdis.2015.11.008

    Article  PubMed  Google Scholar 

  298. Sawczyn-Domańska A, Zwoliński J, Kloc A, Wójcik-Fatla A (2023) Prevalence of Borrelia, Neoehrlichia mikurensis and Babesia in ticks collected from vegetation in eastern Poland. Exp Appl Acarol 90:409–428. https://doi.org/10.1007/s10493-023-00818-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Silaghi C, Woll D, Mahling M, Pfister K, Pfeffer M (2012) Candidatus Neoehrlichia mikurensis in rodents in an area with sympatric existence of the hard ticks Ixodes ricinus and Dermacentor reticulatus. Parasit. Vectors 5:285. https://doi.org/10.1186/1756-3305-5-285

    Article  PubMed  PubMed Central  Google Scholar 

  300. Derdáková M, Václav R, Pangrácova-Blaňárová L, Selyemová D, Koči J, Walder G, Špitalská E (2014) Candidatus Neoehrlichia mikurensis and its co-circulation with Anaplasma phagocytophilum in Ixodes ricinus ticks across ecologically different habitats of Central Europe. Parasit Vectors 7:160. https://doi.org/10.1186/1756-3305-7-160

    Article  PubMed  PubMed Central  Google Scholar 

  301. Richter D, Matuschka FR (2012) “Candidatus Neoehrlichia mikurensis”, Anaplasma phagocytophilum, and Lyme disease spirochetes in questing European vector ticks and in feeding ticks removed from people. J. Clin. Microbiol. 50:943–947. https://doi.org/10.1128/JCM.05802-11

    Article  PubMed  PubMed Central  Google Scholar 

  302. Maurer FP, Keller PM, Beuret C, Joha C, Achermann Y, Gubler J et al (2013) Close geographic association of human neoehrlichiosis and tick populations carrying “Candidatus Neoehrlichia mikurensis” in eastern Switzerland. J Clin Microbiol 51(1):169–176. https://doi.org/10.1128/jcm.01955-12

    Article  PubMed  PubMed Central  Google Scholar 

  303. Schötta AM, Wijnveld M, Stockinger H, Stanek G (2017) Approaches for reverse line blot-based detection of microbial pathogens in Ixodes ricinus ticks collected in Austria and impact of the chosen method. Appl. Environ. Microbiol. 83(13N):e00489.17. https://doi.org/10.1128/AEM.00489-17

    Article  PubMed  PubMed Central  Google Scholar 

  304. Silaghi C, Beck R, Oteo JA, Pfeffer M, Sprong H (2016) Neoehrlichiosis: an emerging tick-borne zoonosis caused by Candidatus Neoehrlichia mikurensis. Exp Appl Acarol 68:279–297. https://doi.org/10.1007/s10493-015-9935-y

    Article  PubMed  Google Scholar 

  305. Sparagano OA (2023) Tick and Tick-Borne Diseases: New Problems Providing New Possible Solutions. Pathogens 12(1):120. https://doi.org/10.3390/pathogens12010120

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The manuscript was written by E.P., M.B., G.M., P.P., N.I. and M.C. and all authors commented on previous versions of the manuscript. E.P. had the idea for the article, all authors performed the literature search, critically revised the work and approved the final manuscript.

Corresponding author

Correspondence to Emina Pustijanac.

Ethics declarations

Competing Interests

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pustijanac, E., Buršić, M., Millotti, G. et al. Tick-Borne Bacterial Diseases in Europe: Threats to public health. Eur J Clin Microbiol Infect Dis (2024). https://doi.org/10.1007/s10096-024-04836-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10096-024-04836-5

Keywords

Navigation