Skip to main content

Advertisement

Log in

Alopecia areata-like pattern of baldness: the most recent update and the expansion of novel phenotype and genotype in the CTNNB1 gene

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Neurodevelopmental disorder with spastic diplegia and visual defects (NEDSDV) is a rare autosomal dominant genetic disorder caused by genetic alterations in the CTNNB1 gene. CTNNB1 is a gene that encodes β-catenin, an effector protein in the canonical Wnt pathway involved in stem cell differentiation and proliferation, synaptogenesis, and a wide range of essential cellular mechanisms. Mutations in this gene are also found in specific malignancies as well as exudative vitreoretinopathy. To date, only a limited number of cases of this disease have been reported, and though they share some phenotypic manifestations such as intellectual disability, developmental delay, microcephaly, behavioral abnormalities, and dystonia, the variety of phenotypic traits of these patients shows extreme heterogeneity. In this study, two cases of NEDSDV with de novo CTNNB1 mutations: c.1420C>T(p.R474X) and c.1377_1378Del(p.Ala460Serfs*29), found with whole exome sequencing (WES) have been reported and the clinical and paraclinical characteristics of these patients have been described. Due to such a wide range of clinical characteristics, the identification of new patients and novel variants is of great importance in order to establish a more complete phenotypic spectrum, as well as to conclude the genotype-phenotype correlations in these cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data related to this work is available from the corresponding authors.

References

  1. Kwan V, Unda BK, Singh KK (2016) Wnt signaling networks in autism spectrum disorder and intellectual disability. J Neurodev Disord 8:45

    Article  PubMed  PubMed Central  Google Scholar 

  2. Nusse R (2012) Wnt signaling. Cold Spring Harb Perspect Biol 4(5):a011163

    Article  PubMed  PubMed Central  Google Scholar 

  3. Noelanders R, Vleminckx K (2017) How Wnt signaling builds the brain: bridging development and disease. Neuroscientist 23:314–329

    Article  CAS  PubMed  Google Scholar 

  4. Mo Z, Zeng Z et al (2022) Activation of Wnt/beta-catenin signaling pathway as a promising therapeutic candidate for cerebral ischemia/reperfusion injury. Front Pharmacol 13:914537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhuang W, Ye T, Wang W, Song W, Tan T (2023) CTNNB1 in neurodevelopmental disorders. Front Psychiatry 14:1143328

    Article  PubMed  PubMed Central  Google Scholar 

  6. Spagnoli C, Salerno GG et al (2022) Novel CTNNB1 variant leading to neurodevelopmental disorder with spastic diplegia and visual defects plus peripheral neuropathy: a case report. Am J Med Genet A 188:3118–3120

    Article  PubMed  Google Scholar 

  7. Bulot V, Ramond F, Mauguiere F, Mazzola L (2022) Startle disease: an overlooked symptom of CTNNB1-related neurodevelopmental disorder with spastic diplegia and visual defects. Neurol Genet 8:e200039

    Article  PubMed  PubMed Central  Google Scholar 

  8. Dashti S, Salehpour S et al (2022) Identification of a novel de novo mutation in the CTNNB1 gene in an Iranian patient with intellectual disability. Neurol Sci 43:2859–2863

    Article  PubMed  Google Scholar 

  9. Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16:1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26:589–595

    Article  PubMed  PubMed Central  Google Scholar 

  11. McKenna A, Hanna M et al (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38:e164

    Article  PubMed  PubMed Central  Google Scholar 

  13. Schwarz JM, Cooper DN, Schuelke M, Seelow D (2014) MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods 11:361–362

    Article  CAS  PubMed  Google Scholar 

  14. Shihab HA, Gough J et al (2013) Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models. Hum Mutat 34:57–65

    Article  CAS  PubMed  Google Scholar 

  15. Quang D, Chen Y, Xie X (2015) DANN: a deep learning approach for annotating the pathogenicity of genetic variants. Bioinformatics 31:761–763

    Article  CAS  PubMed  Google Scholar 

  16. Richards S, Aziz N et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17:405–423

    Article  PubMed  PubMed Central  Google Scholar 

  17. Nollet F, Berx G, Molemans F, van Roy F (1996) Genomic organization of the human beta-catenin gene (CTNNB1). Genomics 32:413–424

    Article  CAS  PubMed  Google Scholar 

  18. Bailey A, Norris AL et al (1995) Yeast artificial chromosome cloning of the beta-catenin locus on human chromosome 3p21-22. Chromosome Res 3:201–203

    Article  CAS  PubMed  Google Scholar 

  19. Trent JM, Wiltshire R et al (1995) The gene for the APC-binding protein beta-catenin (CTNNB1) maps to chromosome 3p22, a region frequently altered in human malignancies. Cytogenet Cell Genet 71:343–344

    Article  CAS  PubMed  Google Scholar 

  20. Valenta T, Hausmann G, Basler K (2012) The many faces and functions of beta-catenin. EMBO J 31:2714–2736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Clevers H, Nusse R (2012) Wnt/beta-catenin signaling and disease. Cell 149:1192–1205

    Article  CAS  PubMed  Google Scholar 

  22. Kobayashi M, Honma T et al (2000) Nuclear translocation of beta-catenin in colorectal cancer. Br J Cancer 82:1689–1693

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Simcha I, Shtutman M et al (1998) Differential nuclear translocation and transactivation potential of beta-catenin and plakoglobin. J Cell Biol 141:1433–1448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee S, Jang SS et al (2022) The extended clinical and genetic spectrum of CTNNB1-related neurodevelopmental disorder. Front Pediatr 10:960450

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kuechler A, Willemsen MH et al (2015) De novo mutations in beta-catenin (CTNNB1) appear to be a frequent cause of intellectual disability: expanding the mutational and clinical spectrum. Hum Genet 134:97–109

    Article  CAS  PubMed  Google Scholar 

  26. Kharbanda M, Pilz DT et al (2017) Clinical features associated with CTNNB1 de novo loss of function mutations in ten individuals. Eur J Med Genet 60:130–135

    Article  PubMed  Google Scholar 

  27. Vissers L, van Nimwegen KJM et al (2017) A clinical utility study of exome sequencing versus conventional genetic testing in pediatric neurology. Genet Med 19:1055–1063

    Article  PubMed  PubMed Central  Google Scholar 

  28. Huelsken J, Vogel R, Erdmann B, Cotsarelis G, Birchmeier W (2001) Beta-catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell 105:533–545

    Article  CAS  PubMed  Google Scholar 

  29. Yan D, Sun Y et al (2022) Genetic and clinical characteristics of 24 mainland Chinese patients with CTNNB1 loss-of-function variants. Mol Genet Genomic Med 10:e2067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Haseeb M, Pirzada RH, Ain QU, Choi S (2019) Wnt signaling in the regulation of immune cell and cancer therapeutics. Cells 8(11):1380. https://doi.org/10.3390/cells8111380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Namazzi G, Hildenwall H et al (2019) Prevalence and associated factors of neurodevelopmental disability among infants in eastern Uganda: a population based study. BMC Pediatr 19:379

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mamidala MP, Polinedi A et al (2013) Prenatal, perinatal and neonatal risk factors of autism spectrum disorder: a comprehensive epidemiological assessment from India. Res Dev Disabil 34:3004–3013

    Article  PubMed  Google Scholar 

  33. Sachdeva S, Amir A et al (2010) Global developmental delay and its determinants among urban infants and toddlers: a cross sectional study. Indian J Pediatr 77:975–980

    Article  PubMed  Google Scholar 

  34. Liu J, Xiao Q et al (2022) Wnt/beta-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther 7:3

    Article  PubMed  PubMed Central  Google Scholar 

  35. Nusse R, Varmus HE (1982) Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 31:99–109

    Article  CAS  PubMed  Google Scholar 

  36. Niehrs C (2012) The complex world of WNT receptor signalling. Nat Rev Mol Cell Biol 13:767–779

    Article  CAS  PubMed  Google Scholar 

  37. Clevers H (2006) Wnt/beta-catenin signaling in development and disease. Cell 127:469–480

    Article  CAS  PubMed  Google Scholar 

  38. Akoumianakis I, Polkinghorne M, Antoniades C (2022) Non-canonical WNT signalling in cardiovascular disease: mechanisms and therapeutic implications. Nat Rev Cardiol 19:783–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chavali M, Klingener M et al (2018) Non-canonical Wnt signaling regulates neural stem cell quiescence during homeostasis and after demyelination. Nat Commun 9:36

    Article  PubMed  PubMed Central  Google Scholar 

  40. Davidson KC, Jamshidi P et al (2007) Wnt3a regulates survival, expansion, and maintenance of neural progenitors derived from human embryonic stem cells. Mol Cell Neurosci 36:408–415

    Article  CAS  PubMed  Google Scholar 

  41. Dravid G, Ye Z et al (2005) Defining the role of Wnt/beta-catenin signaling in the survival, proliferation, and self-renewal of human embryonic stem cells. Stem Cells 23:1489–1501

    Article  CAS  PubMed  Google Scholar 

  42. Inestrosa NC, Varela-Nallar L (2014) Wnt signaling in the nervous system and in Alzheimer’s disease. J Mol Cell Biol 6:64–74

    Article  PubMed  Google Scholar 

  43. Huelsken J, Vogel R et al (2000) Requirement for beta-catenin in anterior-posterior axis formation in mice. J Cell Biol 148:567–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lickert H, Kutsch S et al (2002) Formation of multiple hearts in mice following deletion of beta-catenin in the embryonic endoderm. Dev Cell 3:171–181

    Article  CAS  PubMed  Google Scholar 

  45. Thomas KR, Capecchi MR (1990) Targeted disruption of the murine int-1 proto-oncogene resulting in severe abnormalities in midbrain and cerebellar development. Nature 346:847–850

    Article  CAS  PubMed  Google Scholar 

  46. Wickham RJ, Alexander JM et al (2019) Learning impairments and molecular changes in the brain caused by beta-catenin loss. Hum Mol Genet 28:2965–2975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Brigidi GS, Bamji SX (2011) Cadherin-catenin adhesion complexes at the synapse. Curr Opin Neurobiol 21:208–214

    Article  CAS  PubMed  Google Scholar 

  48. Kayumi S, Perez-Jurado LA et al (2022) Genomic and phenotypic characterization of 404 individuals with neurodevelopmental disorders caused by CTNNB1 variants. Genet Med 24:2351–2366

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the family who participated in this study.

Author information

Authors and Affiliations

Authors

Contributions

AM, STF, M-RG, PK, PL, and MM completed recruitment and performed clinical confirmation. M-RG, FH-G, and MM performed molecular experiments like DNA extraction and analyzed WES results. Bioinformatic analyses were done by AM, M-RG, and FH-G. AM and STF wrote the manuscript. M-RG, FH-G, HS, RM, and MM contributed to the revisions of the manuscript. The final revision has been confirmed and essential ideas for the revision of the manuscript have been provided by all authors.

Corresponding authors

Correspondence to Mohammad Miryounesi or Mohammad-Reza Ghasemi.

Ethics declarations

Ethical approval and consent to participate

This study was approved by the Research Ethics Committee of the Faculty of Medicine, Shahid Beheshti University of Medical Sciences, and was conducted in accordance with the tenets of the Declaration of Helsinki. Informed consent was obtained from parents.

Consent for publication

All the contributing authors agreed for the publication in this journal.

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moeinafshar, A., Tehrani Fateh, S., Sadeghi, H. et al. Alopecia areata-like pattern of baldness: the most recent update and the expansion of novel phenotype and genotype in the CTNNB1 gene. Neurol Sci 44, 4041–4048 (2023). https://doi.org/10.1007/s10072-023-06922-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-023-06922-6

Keywords

Navigation