Skip to main content

Advertisement

Log in

Identification of a novel de novo mutation in the CTNNB1 gene in an Iranian patient with intellectual disability

  • Brief Communication
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

CTNNB1 encodes for the β-catenin protein, a component of the cadherin adhesion complex, which regulates cell–cell adhesion and gene expression in the canonical Wnt signaling pathway. Mutations in CTNNB1 have been reported to be associated with cancer and mental disorders. Recently, loss-of-function mutations in CTNNB1 have been observed in patients with intellectual disability and some other clinical manifestations including motor and language delays, microcephaly, and mild visual defects. We report an 8-year-old Iranian girl with intellectual disability, hypotonia, impaired vision such as vitreomacular adhesion, motor delay, and speech delay. A novel, de novo nonsense mutation (c.1014G > A; p.Trp338Ter) in exon 7 of the CTNNB1 (NM_001904) gene was detected and confirmed by whole-exome sequencing and Sanger sequencing, respectively. This study helps to expand the growing list of loss-of-function mutations known in the CTNNB1 gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Data availability

The data related to this work is available at the corresponding author.

References

  1. Kuechler A, Willemsen MH, Albrecht B, Bacino CA, Bartholomew DW, van Bokhoven H et al (2015) De novo mutations in beta-catenin (CTNNB1) appear to be a frequent cause of intellectual disability: expanding the mutational and clinical spectrum. Hum Genet 134(1):97–109

    Article  CAS  Google Scholar 

  2. Kharbanda M, Pilz DT, Tomkins S, Chandler K, Saggar A, Fryer A et al (2017) Clinical features associated with CTNNB1 de novo loss of function mutations in ten individuals. Eur J Med Genet 60(2):130–135

    Article  Google Scholar 

  3. Scimone C, Donato L, Marino S, Alafaci C, D’Angelo R, Sidoti A (2019) Vis-à-vis: a focus on genetic features of cerebral cavernous malformations and brain arteriovenous malformations pathogenesis. Neurol Sci 40(2):243–251

    Article  Google Scholar 

  4. Thomas KR, Capecchi MR (1990) Targeted disruption of the murine int-1 proto-oncogene resulting in severe abnormalities in midbrain and cerebellar development. Nature 346(6287):847–850

    Article  CAS  Google Scholar 

  5. Brault V, Moore R, Kutsch S, Ishibashi M, Rowitch DH, McMahon AP et al (2001) Inactivation of the (β)-catenin gene by Wnt1-Cre-mediated deletion results in dramatic brain malformation and failure of craniofacial development. Development 128(8):1253–1264

    Article  CAS  Google Scholar 

  6. Miller S, Dykes D, Polesky H (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16(3):1215

    Article  CAS  Google Scholar 

  7. Zimmermann M, Deininger N, Willikens S, Haack TB, Grundmann-Hauser K, Streubel B et al (2020) Tetraparesis and sensorimotor axonal polyneuropathy due to co-occurrence of Pompe disease and hereditary ATTR amyloidosis. Neurol Sci 42(4):1523–1525

  8. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A et al (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20(9):1297–1303

    Article  CAS  Google Scholar 

  9. Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38(16):e164-e

    Article  Google Scholar 

  10. Schwarz JM, Cooper DN, Schuelke M, Seelow D (2014) MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods 11(4):361–362

    Article  CAS  Google Scholar 

  11. Shihab HA, Gough J, Cooper DN, Stenson PD, Barker GL, Edwards KJ et al (2013) Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models. Hum Mutat 34(1):57–65

    Article  CAS  Google Scholar 

  12. Quang D, Chen Y, Xie X (2015) DANN: a deep learning approach for annotating the pathogenicity of genetic variants. Bioinformatics 31(5):761–763

    Article  CAS  Google Scholar 

  13. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC et al (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612

    Article  CAS  Google Scholar 

  14. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17(5):405–423

    Article  Google Scholar 

  15. Keller R, Basta R, Salerno L, Elia M (2017) Autism, epilepsy, and synaptopathies: a not rare association. Neurol Sci 38(8):1353–1361

    Article  Google Scholar 

  16. De Ligt J, Willemsen MH, Van Bon BW, Kleefstra T, Yntema HG, Kroes T et al (2012) Diagnostic exome sequencing in persons with severe intellectual disability. N Engl J Med 367(20):1921–1929

    Article  Google Scholar 

  17. Dubruc E, Putoux A, Labalme A, Rougeot C, Sanlaville D, Edery P (2014) A new intellectual disability syndrome caused by CTNNB1 haploinsufficiency. Am J Med Genet A 164(6):1571–1575

    Article  CAS  Google Scholar 

  18. Tucci V, Kleefstra T, Hardy A, Heise I, Maggi S, Willemsen MH et al (2014) Dominant β-catenin mutations cause intellectual disability with recognizable syndromic features. J Clin Investig 124(4):1468–1482

    Article  CAS  Google Scholar 

  19. Winczewska-Wiktor A, Badura-Stronka M, Monies-Nowicka A, Nowicki MM, Steinborn B, Latos-Bieleńska A et al (2016) A de novo CTNNB1 nonsense mutation associated with syndromic atypical hyperekplexia, microcephaly and intellectual disability: a case report. BMC Neurol 16(1):1–6

    Article  Google Scholar 

  20. Wang H, Zhao Y, Yang L, Han S, Qi M (2019) Identification of a novel splice mutation in CTNNB1 gene in a Chinese family with both severe intellectual disability and serious visual defects. Neurol Sci 40(8):1701–1704

    Article  Google Scholar 

  21. Valenta T, Hausmann G, Basler K (2012) The many faces and functions of β-catenin. EMBO J 31(12):2714–2736

    Article  CAS  Google Scholar 

  22. Clevers H, Nusse R (2012) Wnt/β-catenin signaling and disease. Cell 149(6):1192–1205

    Article  CAS  Google Scholar 

  23. Kobayashi M, Honma T, Matsuda Y, Suzuki Y, Narisawa R, Ajioka Y et al (2000) Nuclear translocation of beta-catenin in colorectal cancer. Br J Cancer 82(10):1689–1693

    Article  CAS  Google Scholar 

  24. Simcha I, Shtutman M, Salomon D, Zhurinsky J, Sadot E, Geiger B et al (1998) Differential nuclear translocation and transactivation potential of β-catenin and plakoglobin. J Cell Biol 141(6):1433–1448

    Article  CAS  Google Scholar 

  25. Brigidi GS, Bamji SX (2011) Cadherin-catenin adhesion complexes at the synapse. Curr Opin Neurobiol 21(2):208–214

    Article  CAS  Google Scholar 

  26. Zhang Z, Xin D, Wang P, Zhou L, Hu L, Kong X et al (2009) Noisy splicing, more than expression regulation, explains why some exons are subject to nonsense-mediated mRNA decay. BMC Biol 7(1):1–13

    Article  Google Scholar 

  27. Uchida N, Honjo Y, Johnson KR, Wheelock MJ, Takeichi M (1996) The catenin/cadherin adhesion system is localized in synaptic junctions bordering transmitter release zones. J Cell Biol 135(3):767–779

    Article  CAS  Google Scholar 

  28. Park M, Shen K (2012) WNTs in synapse formation and neuronal circuitry. EMBO J 31(12):2697–2704

    Article  CAS  Google Scholar 

  29. Salinas PC (2012) Wnt signaling in the vertebrate central nervous system: from axon guidance to synaptic function. Cold Spring Harbor Perspect Biol 4(2):a008003

    Article  Google Scholar 

  30. Salinas PC, Zou Y (2008) Wnt signaling in neural circuit assembly. Annu Rev Neurosci 31:339–358

    Article  CAS  Google Scholar 

  31. Rosso SB, Inestrosa NC (2013) WNT signaling in neuronal maturation and synaptogenesis. Front Cell Neurosci 7:103

    Article  CAS  Google Scholar 

  32. Molenaar M, van de Wetering M, Oosterwegel M, Peterson-Maduro J, Godsave S, Korinek V et al (1996) XTcf-3 transcription factor mediates β-catenin-induced axis formation in Xenopus embryos. Cell 86(3):391–399

    Article  CAS  Google Scholar 

  33. Huelsken J, Vogel R, Brinkmann V, Erdmann B, Birchmeier C, Birchmeier W (2000) Requirement for β-catenin in anterior-posterior axis formation in mice. J Cell Biol 148(3):567–578

    Article  CAS  Google Scholar 

  34. Lickert H, Kutsch S, Kanzler Bt, Tamai Y, Taketo MM, Kemler R (2002) Formation of multiple hearts in mice following deletion of β-catenin in the embryonic endoderm. Dev Cell. 3(2):171–81

    Article  CAS  Google Scholar 

  35. McMahon AP, Bradley A (1990) The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell 62(6):1073–1085

    Article  CAS  Google Scholar 

  36. Galceran J, Miyashita-Lin EM, Devaney E, Rubenstein J, Grosschedl R (2000) Hippocampus development and generation of dentate gyrus granule cells is regulated by LEF1. Development 127(3):469–482

    Article  CAS  Google Scholar 

  37. Lee S, Tole S, Grove E, McMahon AP (2000) A local Wnt-3a signal is required for development of the mammalian hippocampus. Development 127(3):457–467

    Article  CAS  Google Scholar 

  38. Chenn A, Walsh CA (2002) Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science 297(5580):365–369

    Article  CAS  Google Scholar 

  39. Wickham RJ, Alexander JM, Eden LW, Valencia-Yang M, Llamas J, Aubrey JR et al (2019) Learning impairments and molecular changes in the brain caused by β-catenin loss. Hum Mol Genet 28(17):2965–2975

    Article  CAS  Google Scholar 

  40. Gao X, Arlotta P, Macklis JD, Chen J (2007) Conditional knock-out of β-catenin in postnatal-born dentate gyrus granule neurons results in dendritic malformation. J Neurosci 27(52):14317–14325

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the family who participated in this study.

Accession number

The variant obtained ClinVar accession number SCV001251793.1.

Author information

Authors and Affiliations

Authors

Contributions

Recruitment and clinical confirmation were completed and performed by SS, M-RG, and MM. MR, M-RG, FH-G, and MM performed molecular experiments like DNA extraction and analyzed WES results. Bioinformatic analyses were done by SD and FH-G. SD wrote the manuscript. M-RG, FH-G, HS, RM, VRY, and MM contributed to the revisions of the manuscript. The final revision has been confirmed and essential ideas into the revision of the manuscript have been provided by all authors.

Corresponding author

Correspondence to Mohammad Miryounesi.

Ethics declarations

Ethical approval and consent to participate

This study was approved by the Research Ethics Committee of the Faculty of Medicine, Shahid Beheshti University of Medical Sciences, and was conducted in accordance with the tenets of the Declaration of Helsinki. Informed consent was obtained from parents.

Consent for publication

All the contributing authors agreed for the publication in this journal.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dashti, S., Salehpour, S., Ghasemi, MR. et al. Identification of a novel de novo mutation in the CTNNB1 gene in an Iranian patient with intellectual disability. Neurol Sci 43, 2859–2863 (2022). https://doi.org/10.1007/s10072-022-05904-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-022-05904-4

Keywords

Navigation