Skip to main content

Advertisement

Log in

Dysregulation of IGF-1/GLP-1 signaling in the progression of ALS: potential target activators and influences on neurological dysfunctions

  • Review Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

The prominent causes for motor neuron diseases like ALS are demyelination, immune dysregulation, and neuroinflammation. Numerous research studies indicate that the downregulation of IGF-1 and GLP-1 signaling pathways plays a significant role in the progression of ALS pathogenesis and other neurological disorders. In the current review, we discussed the dysregulation of IGF-1/GLP-1 signaling in neurodegenerative manifestations of ALS like a genetic anomaly, oligodendrocyte degradation, demyelination, glial overactivation, immune deregulation, and neuroexcitation. In addition, the current review reveals the IGF-1 and GLP-1 activators based on the premise that the restoration of abnormal IGF-1/GLP-1 signaling could result in neuroprotection and neurotrophic effects for the clinical-pathological presentation of ALS and other brain diseases. Thus, the potential benefits of IGF-1/GLP-1 signal upregulation in the development of disease-modifying therapeutic strategies may prevent ALS and associated neurocomplications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

AAV:

adeno-associated virus

AD:

Alzheimer’s disease

Akt:

protein kinase B

ALS:

amyotrophic lateral sclerosis

ALS2:

alsin rho guanine nucleotide exchange factor

AMPA:

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

ANG:

angiogenin

APAF-1:

apoptotic protease activating factor 1

APE1:

apurinic/apyrimidinic endonuclease 1

APP:

amyloid precursor protein

ATP:

adenosine triphosphate

BBB:

blood-brain barrier

bFGF:

basic fibroblast growth factor

BV-2:

cellosaurus cell line BV-2

C9orf72:

C9 open reading frame 72

cAMP:

cyclic AMP

CBT:

corticobulbar tract

CD4+:

cluster of differentiation 4

CD8+:

cluster of differentiation 8

CGN:

cerebellar granule cells

ChAT:

choline acetyl transferase

CK:

cytokine

CNS:

central nervous system

CREB:

cAMP-response element-binding protein

CST:

corticospinal tract

DAMP:

damage-associated molecular pattern

DNA:

deoxyribonucleic acid

EAE :

experimental autoimmune encephalomyelitis

ERK:

extracellular signal-regulated kinase

FAK1:

focal adhesion kinase 1

fALS:

familial ALS

FOXO3:

forkhead box O3

FUS:

fused in sarcoma

GCL:

granule cell layer

GDNF:

glial-derived neurotrophic factor

GLP:

glucagon-like peptide-1

GLP-1R:

glucagon-like peptide-1 receptor

GSK-3β:

glycogen synthase kinase-3β

HD:

Huntington’s disease

HNE:

4-hydroxy-2-nonenal

HSP:

heat shock proteins

HUVEC:

human umbilical vein endothelial cells

IGF-1:

insulin-like growth factor-1

IGF-1R:

insulin-like growth factor-1 receptor

IGF-2:

insulin-like growth factor-2

IGFBP-1:

insulin-like growth factor binding protein-1

IL:

interleukin

iNOS:

inducible nitric oxide synthase

LMN:

lower motor neuron

LPS:

lipopolysaccharide

LTB4:

leukotriene B4

MAG:

myelin-associated glycoprotein

MOG:

myelin oligodendrocyte glycoprotein

MBP:

myelin basic protein

MDC:

monodansylcadaverine

mHtt:

mutant Huntingtin protein

MND:

motor neuron disease

MPTP:

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

MS:

multiple sclerosis

MSC:

mesenchymal stromal cells

mTOR:

mammalian target of Rapamycin

NDD:

neurodegenerative disorders

NF-κB:

nuclear factor kappa light chain enhancer of activated B cells

NMDA:

N-methyl D-aspartate

NO:

nitric oxide

NR2B:

N-methyl D-aspartate receptor subtype 2B

3-NT:

3-nitrotyrosine

3-oxoG:

8-oxo-deoxyguanosine

ODC:

oligodendrocyte cells

OPC:

oligodendrocyte progenitor cells

OS:

oxidative stress

PARP-1:

poly ADP ribose polymerase-1

PC12:

pheochromocytoma cell 12

PD:

Parkinson’s disease

PDK1:

3-phosphoinositide-dependent protein kinase 1

PEG:

polyethylene glycol

PGE:

prostaglandin E

PI3K:

phosphoinositide 3-kinase

PKA:

protein kinase A

PLP:

pyridoxal phosphate

Pro-OL:

pro-oligodendroblast

PS1:

presenilin 1

RCT:

randomized controlled trial

rhIGF-1:

recombinant human IGF-1

RNS:

reactive nitrogen species

ROS:

reactive oxygen species

sALS:

sporadic ALS

siRNA:

small interference RNA

SN:

substantia nigra

SOD:

superoxide dismutase 1

Src kinase:

proto-oncogene tyrosine-protein kinase

TARDBP:

TAR DNA-binding protein

TDP-43:

Tar DNA-binding protein 43

TEM:

transmission electron microscopy

Th1:

T helper cell type 1

TLR-4:

toll-like receptor-4

TNF-α:

tumor necrosis factor-α

TNF-R1:

tumor necrosis factor receptor 1

Treg:

regulatory T cells

UMN:

upper motor neuron

VAPB:

vesicle-associated membrane protein-associated protein B

References

  1. Underwood LE, Thissen JP, Lemozy S, Ketelslegers JM, Clemmons DR (1994) Hormonal and nutritional regulation of IGF-I and its binding proteins. Hormone Research in Paediatrics 42(4-5):145–151

    Article  CAS  Google Scholar 

  2. Rinderknecht E, Humbel RE (1978) The amino acid sequence of human insulin-like growth factor I and its structural homology with proinsulin. J Biol Chem 253(8):2769–2776

    Article  CAS  PubMed  Google Scholar 

  3. Withers DJ, White M (2000) Perspective: the insulin signaling system—a common link in the pathogenesis of type 2 diabetes. Endocrinology 141(6):1917–1921

    Article  CAS  PubMed  Google Scholar 

  4. Clemmons DR (1997) Insulin-like growth factor binding proteins and their role in controlling IGF actions. Cytokine Growth Factor Rev 8(1):45–62

    Article  CAS  PubMed  Google Scholar 

  5. Baragli A, Lanfranco F, Allasia S, Granata R, Ghigo E (2011) Neuroendocrine and metabolic activities of ghrelin gene products. Peptides. 32(11):2323–2332

    Article  CAS  PubMed  Google Scholar 

  6. Vogel T (2013) Insulin/IGF-signalling in embryonic and adult neural proliferation and differentiation in the mammalian central nervous system. Trends in Cell Signaling Pathways in Neuronal Fate Decision, 38-73.

  7. Laviola L, Natalicchio A, Giorgino F (2007) The IGF-I signaling pathway. Curr Pharm Des 13(7):663–669

    Article  CAS  PubMed  Google Scholar 

  8. Perry T, Lahiri DK, Sambamurti K, Chen D, Mattson MP, Egan JM, Greig NH (2003) Glucagon-like peptide-1 decreases endogenous amyloid-β peptide (Aβ) levels and protects hippocampal neurons from death induced by Aβ and iron. J Neurosci Res 72(5):603–612

    Article  CAS  PubMed  Google Scholar 

  9. Baggio LL, Drucker DJ (2007 May) Biology of incretins: GLP-1 and GIP. Gastroenterology. 132(6):2131–2157. https://doi.org/10.1053/j.gastro.2007.03.054

    Article  CAS  PubMed  Google Scholar 

  10. Sarkar S, Fekete C, Légrádi G, Lechan RM (2003) Glucagon like peptide-1 (7-36) amide (GLP-1) nerve terminals densely innervate corticotropin-releasing hormone neurons in the hypothalamic paraventricular nucleus. Brain Res 985(2):163–168

    Article  CAS  PubMed  Google Scholar 

  11. Doyle ME, Egan JM (2001) Glucagon-like peptide-1. Recent Prog Horm Res 56:377–399. https://doi.org/10.1210/rp.56.1.377

    Article  CAS  PubMed  Google Scholar 

  12. Bassil F, Fernagut PO, Bezard E, Meissner WG (2014) Insulin, IGF-1 and GLP-1 signaling in neurodegenerative disorders: targets for disease modification? Prog Neurobiol 118:1–18

    Article  CAS  PubMed  Google Scholar 

  13. Yin F, Jiang T, Cadenas E (2013) Metabolic triad in brain aging: mitochondria, insulin/IGF-1 signalling and JNK signalling.

  14. Saenger S, Holtmann B, Nilges MR, Schroeder S, Hoeflich A, Kletzl H, Spooren W, Ostrowitzki S, Hanania T, Sendtner M et al (2012) Functional improvement in mouse models of familial amyotrophic lateral sclerosis by pegylated insulin-like growth factor i treatment depends on disease severity. Amyotroph Lateral Scler 13:418–429

    Article  CAS  PubMed  Google Scholar 

  15. Sukhanov S, Higashi Y, Shai SY, Vaughn C, Mohler J, Li Y, Song YH, Titterington J, Delafontaine P (2007) IGF-1 reduces inflammatory responses, suppresses oxidative stress, and decreases atherosclerosis progression in ApoE-deficient mice. Arterioscler Thromb Vasc Biol 27(12):2684–2690

    Article  CAS  PubMed  Google Scholar 

  16. Hao CN, Geng YJ, Li F, Yang T, Su DF, Duan JL, Li Y (2011) Insulin-like growth factor-1 receptor activation prevents hydrogen peroxide-induced oxidative stress, mitochondrial dysfunction and apoptosis. Apoptosis 16(11):1118–1127

    Article  CAS  PubMed  Google Scholar 

  17. McMorris FA, McKinnon RD (1996) Regulation of oligodendrocyte development and CNS myelination by growth factors: prospects for therapy of demyelinating disease. Brain Pathol 6(3):313–329

    Article  CAS  PubMed  Google Scholar 

  18. Grinberg YY, Dibbern ME, Levasseur VA, Kraig RP (2013) Insulin-like growth factor-1 abrogates microglial oxidative stress and TNF-α responses to spreading depression. J Neurochem 126(5):662–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Labandeira-Garcia JL, Costa-Besada MA, Labandeira CM, Villar-Cheda B, Rodríguez-Perez AI (2017) Insulin-like growth factor-1 and neuroinflammation. Front Aging Neurosci 9:365

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Dodge JC, Haidet AM, Yang W, Passini MA, Hester M, Clarke J, Roskelley EM, Treleaven CM, Rizo L, Martin H, Kim SH (2008) Delivery of AAV-IGF-1 to the CNS extends survival in ALS mice through modification of aberrant glial cell activity. Mol Ther 16(6):1056–1064

    Article  CAS  PubMed  Google Scholar 

  21. Alam M, Yadav RK, Minj E, Tiwari A, Mehan S (2020) Exploring molecular approaches in amyotrophic lateral sclerosis: drug targets from clinical and pre-clinical findings. Curr Mol Pharmacol 13:1. https://doi.org/10.2174/1566524020666200427214356

    Article  Google Scholar 

  22. Kim JH, Wu TH, Budde MD, Lee JM, Song SK (2011) Noninvasive detection of brainstem and spinal cord axonal degeneration in an amyotrophic lateral sclerosis mouse model. NMR Biomed 24(2):163–169

    Article  PubMed  Google Scholar 

  23. van Eijk RP, Jones AR, Sproviero W, Shatunov A, Shaw PJ, Leigh PN, Young CA, Shaw CE, Mora G, Mandrioli J, Borghero G (2017) Meta-analysis of pharmacogenetic interactions in amyotrophic lateral sclerosis clinical trials. Neurology 89(18):1915–1922

    Article  PubMed  PubMed Central  Google Scholar 

  24. Haidet-Phillips AM, Hester ME, Miranda CJ, Meyer K, Braun L, Frakes A, Song S, Likhite S, Murtha MJ, Foust KD, Rao M (2011) Astrocytes from familial and sporadic ALS patients are toxic to motor neurons. Nat Biotechnol 29(9):824–828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bakavayev S, Chetrit N, Zvagelsky T, Mansour R, Vyazmensky M, Barak Z, Israelson A, Engel S (2019) Cu/Zn-superoxide dismutase and wild-type like fALS SOD1 mutants produce cytotoxic quantities of H2O2 via cysteine-dependent redox short-circuit. Sci Rep 9(1):10826. https://doi.org/10.1038/s41598-019-47326-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chia R, Chiò A, Traynor BJ (2018) Novel genes associated with amyotrophic lateral sclerosis: diagnostic and clinical implications. The Lancet Neurology 17(1):94–102. https://doi.org/10.1016/S1474-4422(17)30401-5

    Article  CAS  PubMed  Google Scholar 

  27. Chiò A, Mazzini L, Mora G (2020 May 1) Disease-modifying therapies in amyotrophic lateral sclerosis. Neuropharmacology. 167:107986. https://doi.org/10.1016/j.neuropharm.2020.107986

    Article  CAS  PubMed  Google Scholar 

  28. Minj E, Yadav RK, Mehan S (2021) Targeting abnormal Nrf2/HO-1 signaling in amyotrophic lateral sclerosis: current Insights on drug targets and influences on neurological disorders. Curr Mol Med 21:1. https://doi.org/10.2174/1566524021666210111104920

    Article  Google Scholar 

  29. Jellinger KA (2010) Basic mechanisms of neurodegeneration: a critical update. J Cell Mol Med 14(3):457–487

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Statland JM, Barohn RJ, McVey AL, Katz JS, Dimachkie MM (2015) Patterns of weakness, classification of motor neuron disease, and clinical diagnosis of sporadic amyotrophic lateral sclerosis. Neurol Clin 33(4):735–748

    Article  PubMed  PubMed Central  Google Scholar 

  31. de Carvalho M, Swash M (2016) Lower motor neuron dysfunction in ALS. Clin Neurophysiol 127(7):2670–2681

    Article  PubMed  Google Scholar 

  32. Bersano E, Sarnelli MF, Solara V, Iazzolino B, Peotta L, De Marchi F, Facchin A, Moglia C, Canosa A, Calvo A, Chiò A, Mazzini L (2020 Aug) Decline of cognitive and behavioral functions in amyotrophic lateral sclerosis: a longitudinal study. Amyotroph Lateral Scler Frontotemporal Degener 21(5-6):373–379. https://doi.org/10.1080/21678421.2020.1771732

    Article  PubMed  Google Scholar 

  33. Montuschi A, Iazzolino B, Calvo A, Moglia C, Lopiano L, Restagno G, Brunetti M, Ossola I, Lo Presti A, Cammarosano S, Canosa A, Chiò A (2015) Cognitive correlates in amyotrophic lateral sclerosis: a population-based study in Italy. J Neurol Neurosurg Psychiatry 86(2):168–173. https://doi.org/10.1136/jnnp-2013-307223

    Article  PubMed  Google Scholar 

  34. Eisen A, Weber M (2001) The motor cortex and amyotrophic lateral sclerosis. Muscle & Nerve: Official Journal of the American Association of Electrodiagnostic Medicine 24(4):564–573

    Article  CAS  Google Scholar 

  35. Kassubek J, Unrath A, Huppertz HJ, Lulé D, Ethofer T, Sperfeld AD, Ludolph AC (2005) Global brain atrophy and corticospinal tract alterations in ALS, as investigated by voxel-based morphometry of 3-D MRI. Amyotroph Lateral Scler 6(4):213–220

    Article  Google Scholar 

  36. Nodera H, Takamatsu N, Shimatani Y, Mori A, Sato K, Oda M, Terasawa Y, Izumi Y, Kaji R (2014) Thinning of cervical nerve roots and peripheral nerves in ALS as measured by sonography. Clin Neurophysiol 125(9):1906–1911

    Article  PubMed  Google Scholar 

  37. Hanyu N, Oguchi K, Yanagisawa N, Tsukagoshi H (1982) Degeneration and regeneration of ventral root motor fibers in amyotrophic lateral sclerosis: morphometric studies of cervical ventral roots. J Neurol Sci 55(1):99–115

    Article  CAS  PubMed  Google Scholar 

  38. Nihei K, McKee AC, Kowall NW (1993) Patterns of neuronal degeneration in the motor cortex of amyotrophic lateral sclerosis patients. Acta Neuropathol 86(1):55–64

    Article  CAS  PubMed  Google Scholar 

  39. Spiller KJ, Restrepo CR, Khan T, Dominique MA, Fang TC, Canter RG, Roberts CJ, Miller KR, Ransohoff RM, Trojanowski JQ, Lee VMY (2018) Microglia-mediated recovery from ALS-relevant motor neuron degeneration in a mouse model of TDP-43 proteinopathy. Nat Neurosci 21(3):329–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Russo VC, Gluckman PD, Feldman EL, Werther GA (2005) The insulin-like growth factor system and its pleiotropic functions in brain. Endocr Rev 26(7):916–943. https://doi.org/10.1210/er.2004-0024

    Article  CAS  PubMed  Google Scholar 

  41. Muller AP, Fernandez AM, Haas C, Zimmer E, Portela LV, Torres-Aleman I (2012) Reduced brain insulin-like growth factor I function during aging. Mol Cell Neurosci 49(1):9–12

    Article  CAS  PubMed  Google Scholar 

  42. Quesada A, Lee BY, Micevych PE (2008) PI3 kinase/Akt activation mediates estrogen and IGF-1 nigral DA neuronal neuroprotection against a unilateral rat model of Parkinson’s disease. Dev Neurobiol 68:632–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Krishnamurthi R, Stott S, Maingay M, Faull RL, McCarthy D, Gluckman P, Guan J (2004) N-terminal tripeptide of IGF-1 improves functional deficits after 6-OHDA lesion in rats. Neuroreport 15:1601–1604

    Article  CAS  PubMed  Google Scholar 

  44. Ye P, Li L, Richards RG, DiAugustine RP, D’Ercole AJ (2002 Jul 15) Myelination is altered in insulin-like growth factor I null mutant mice. J Neurosci 22(14):6041–6051. https://doi.org/10.1523/JNEUROSCI.22-14-06041.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu W, Ye P, O’Kusky JR, D’Ercole AJ (2009 Oct) Type 1 insulin-like growth factor receptor signaling is essential for the development of the hippocampal formation and dentate gyrus. J Neurosci Res 87(13):2821–2832. https://doi.org/10.1002/jnr.22129

    Article  CAS  PubMed  Google Scholar 

  46. Holzenberger M, Dupont J, Ducos B, Leneuve P, Géloën A, Even PC, Cervera P, Le Bouc Y (2003 Jan 9) IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature. 421(6919):182–187. https://doi.org/10.1038/nature01298

    Article  CAS  PubMed  Google Scholar 

  47. Beck KD, Powell-Braxton L, Widmer HR, Valverde J, Hefti F (1995 Apr) Igf1 gene disruption results in reduced brain size, CNS hypomyelination, and loss of hippocampal granule and striatal parvalbumin-containing neurons. Neuron. 14(4):717–730. https://doi.org/10.1016/0896-6273(95)90216-3

    Article  CAS  PubMed  Google Scholar 

  48. Cheng CM, Mervis RF, Niu SL, Salem N Jr, Witters LA, Tseng V, Reinhardt R, Bondy CA (2003 Jul 1) Insulin-like growth factor 1 is essential for normal dendritic growth. J Neurosci Res 73(1):1–9. https://doi.org/10.1002/jnr.10634

    Article  CAS  PubMed  Google Scholar 

  49. Zeger M, Popken G, Zhang J, Xuan S, Lu QR, Schwab MH, Klaus-Armin Nave, Rowitch D, D’Ercole AJ, Ye P (2007). Insulin-like growth factor type 1 receptor signaling in the cells of oligodendrocyte lineage is required for normal <em>in vivo</em> oligodendrocyte development and myelination 55(4), 400–411. doi:10.1002/glia.20469

  50. Ye P, Carson J, D’Ercole AJ (1995) In vivo actions of insulin-like growth factor-I (IGF-I) on brain myelination: studies of IGF-I and IGF binding protein-1 (IGFBP-1) transgenic mice. J Neurosci 15(11):7344–7356. https://doi.org/10.1523/JNEUROSCI.15-11-07344.1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Abbas T, Faivre E, Hölscher C (2009 Dec 14) Impairment of synaptic plasticity and memory formation in GLP-1 receptor KO mice: interaction between type 2 diabetes and Alzheimer’s disease. Behav Brain Res 205(1):265–271. https://doi.org/10.1016/j.bbr.2009.06.035

    Article  CAS  PubMed  Google Scholar 

  52. During MJ, Cao L, Zuzga DS, Francis JS, Fitzsimons HL, Jiao X, Bland RJ, Klugmann M, Banks WA, Drucker DJ, Haile CN (2003) Glucagon-like peptide-1 receptor is involved in learning and neuroprotection. Nat Med 9(9):1173–1179

    Article  CAS  PubMed  Google Scholar 

  53. Oka J-I, Suzuki E, Kondo Y (2000) Endogenous GLP-1 is involved in β-amyloid protein-induced memory impairment and hippocampal neuronal death in rats. Brain Res 878(1-2):194–198. https://doi.org/10.1016/s0006-8993(00)02741-4

    Article  CAS  PubMed  Google Scholar 

  54. Knauf C, Cani PD, Kim DH, Iglesias MA, Chabo C, Waget A, Colom A, Rastrelli S, Delzenne NM, Drucker DJ, Seeley RJ, Burcelin R (2008 Oct) Role of central nervous system glucagon-like Peptide-1 receptors in enteric glucose sensing. Diabetes. 57(10):2603–2612. https://doi.org/10.2337/db07-1788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sandoval DA, Bagnol D, Woods SC, D’Alessio DA, Seeley RJ (2008 Aug) Arcuate glucagon-like peptide 1 receptors regulate glucose homeostasis but not food intake. Diabetes. 57(8):2046–2054. https://doi.org/10.2337/db07-1824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Li Y, Perry T, Kindy MS, Harvey BK, Tweedie D, Holloway HW, Powers K, Shen H, Egan JM, Sambamurti K, Brossi A, Lahiri DK, Mattson MP, Hoffer BJ, Wang Y, Greig NH (2009 Jan 27) GLP-1 receptor stimulation preserves primary cortical and dopaminergic neurons in cellular and rodent models of stroke and Parkinsonism. Proc Natl Acad Sci U S A 106(4):1285–1290. https://doi.org/10.1073/pnas.0806720106

    Article  PubMed  PubMed Central  Google Scholar 

  57. Rinaman L, Comer J (2000). Antagonism of central glucagon-like peptide-1 receptors enhances lipopolysaccharide-induced fever 85(1-3), 101. doi:10.1016/s1566-0702(00)00227-7

  58. Humbert S, Bryson EA, Cordelières FP, Connors NC, Datta SR, Finkbeiner S, Greenberg ME, Saudou F (2002) The IGF-1/Akt pathway is neuroprotective in Huntington’s disease and involves Huntingtin phosphorylation by Akt. Dev Cell 2(6):831–837

    Article  CAS  PubMed  Google Scholar 

  59. Morel GR, Leon ML, Uriarte M, Reggiani PC, Goya RG (2017) Therapeutic potential of IGF-1 on hippocampal neurogenesis and function during aging. Neurogenesis (Austin) 4:e1259709

    Article  CAS  Google Scholar 

  60. Bilak MM, Kuncl RW (2001) Delayed application of IGF-I and GDNF can rescue already injured postnatal motor neurons. Neuroreport 12(11):2531–2535

    Article  CAS  PubMed  Google Scholar 

  61. Perry T, Greig NH (2005) Enhancing central nervous system endogenous GLP-1 receptor pathways for intervention in Alzheimer’s disease. Curr Alzheimer Res 2:377–385

    Article  CAS  PubMed  Google Scholar 

  62. Hölscher C (2018) Novel dual GLP-1/GIP receptor agonists show neuroprotective effects in Alzheimer’s and Parkinson’s disease models. Neuropharmacology 136(Pt B):251–259. https://doi.org/10.1016/j.neuropharm.2018.01.040

    Article  CAS  PubMed  Google Scholar 

  63. Yang JL, Chen WY, Chen YP, Kuo CY, Chen SD (2016) Activation of GLP-1 receptor enhances neuronal base excision repair via PI3K-AKT-induced expression of apurinic/apyrimidinic endonuclease 1. Theranostics 6(12):2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sobuś A, Machaliński B (2016) Trophic factors in the therapeutic challenge against ALS: current research directions. Update on Amyotrophic Lateral Sclerosis, 213.

  65. Adem A, Ekblom J, Gillberg PG, Jossan SS, Höög A, Winblad B, Aquilonius SM, Wang LH, Sara V (1994) Insulin-like growth factor-1 receptors in human spinal cord: changes in amyotrophic lateral sclerosis. Journal of Neural Transmission/General Section JNT 97(1):73–84

    Article  CAS  Google Scholar 

  66. Zhu CZ, Auer RN (1994) Intraventricular administration of insulin and IGF-1 in transient forebrain ischemia. J Cereb Blood Flow Metab 14(2):237–242

    Article  CAS  PubMed  Google Scholar 

  67. Araujo DM, Lapchak PA, Collier B, Chabot JG, Quirion R (1989) Insulin-like growth factor-1 (somatomedin-C) receptors in the rat brain: distribution and interaction with the hippocampal cholinergic system. Brain Res 484(1-2):130–138

    Article  CAS  PubMed  Google Scholar 

  68. Cardona-Gómez GP, Chowen JA, Garcia-Segura LM (2000) Estradiol and progesterone regulate the expression of insulin-like growth factor-I receptor and insulin-like growth factor binding protein-2 in the hypothalamus of adult female rats. J Neurobiol 43(3):269–281

    Article  PubMed  Google Scholar 

  69. Alvarez E, Martínez MD, Roncero I, Chowen JA, García-Cuartero B, Gispert JD, Sanz C, Vázquez P, Maldonado A, De Cáceres J, Desco M (2005) The expression of GLP-1 receptor mRNA and protein allows the effect of GLP-1 on glucose metabolism in the human hypothalamus and brainstem. J Neurochem 92(4):798–806

    Article  CAS  PubMed  Google Scholar 

  70. Heppner KM, Kirigiti M, Secher A, Paulsen SJ, Buckingham R, Pyke C, Knudsen LB, Vrang N, Grove KL (2015) Expression and distribution of glucagon-like peptide-1 receptor mRNA, protein and binding in the male nonhuman primate (Macaca mulatta) brain. Endocrinology 156(1):255–267

    Article  PubMed  CAS  Google Scholar 

  71. Hamilton A, Holscher C (2009) Receptors for the insulin-like peptide GLP-1 are expressed on neurons in the CNS Neuroreport 20: 1161

  72. Dupont J, Khan J, Qu BH, Metzler P, Helman L, LeRoith D (2001) Insulin and IGF-1 induce different patterns of gene expression in mouse fibroblast NIH-3T3 cells: identification by cDNA microarray analysis. Endocrinology 142(11):4969–4975

    Article  CAS  PubMed  Google Scholar 

  73. Freude S, Leeser U, Müller M, Hettich MM, Udelhoven M, Schilbach K, Tobe K, Kadowaki T, Köhler C, Schröder H, Krone W (2008) IRS-2 branch of IGF-1 receptor signaling is essential for appropriate timing of myelination. J Neurochem 107(4):907–917

    CAS  PubMed  Google Scholar 

  74. Guan J (2008) Insulin-like growth factor-1 and its derivatives: potential pharmaceutical application for ischemic brain injury. Recent patents on CNS drug discovery 3(2):112–127

    Article  CAS  PubMed  Google Scholar 

  75. O’Neill BT, Lauritzen HP, Hirshman MF, Smyth G, Goodyear LJ, Kahn CR (2015) Differential role of insulin/IGF-1 receptor signaling in muscle growth and glucose homeostasis. Cell Rep 11(8):1220–1235

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Chesik D, De Keyser J, Wilczak N (2008) Insulin-like growth factor system regulates oligodendroglial cell behavior: therapeutic potential in CNS. J Mol Neurosci 35(1):81

    Article  CAS  PubMed  Google Scholar 

  77. Park SE, Dantzer R, Kelley KW, McCusker RH (2011) Central administration of insulin-like growth factor-I decreases depressive-like behavior and brain cytokine expression in mice. J Neuroinflammation 8(1):1–14

    CAS  Google Scholar 

  78. Carro E, Trejo JL, Gomez-Isla T, LeRoith D, Torres-Aleman I (2002) Serum insulin-like growth factor I regulates brain amyloid-beta levels. Nat Med 8:1390–1397

    Article  CAS  PubMed  Google Scholar 

  79. Perry T, Haughey NJ, Mattson MP, Egan JM, Greig NH (2002) Protection and reversal of excitotoxic neuronal damage by glucagon-like peptide-1 and exendin-4. J Pharmacol Exp Ther 302(3):881–888

    Article  CAS  PubMed  Google Scholar 

  80. Brubaker PL, Drucker DJ (2004) Minireview: Glucagon-like peptides regulate cell proliferation and apoptosis in the pancreas, gut, and central nervous system. Endocrinology 145(6):2653–2659

    Article  CAS  PubMed  Google Scholar 

  81. Farilla L, Hui H, Bertolotto C, Kang E, Bulotta A, Di Mario U, Perfetti R (2002) Glucagon-like peptide-1 promotes islet cell growth and inhibits apoptosis in Zucker diabetic rats. Endocrinology 143(11):4397–4408

    Article  CAS  PubMed  Google Scholar 

  82. Green BD, Mooney MH, Gault VA, Irwin N, Bailey CJ, Harriott P, Greer B, O’Harte FP, Flatt PR (2004 Mar) N-terminal His(7)-modification of glucagon-like peptide-1(7-36) amide generates dipeptidyl peptidase IV-stable analogues with potent antihyperglycaemic activity. J Endocrinol 180(3):379–388. https://doi.org/10.1677/joe.0.1800379

    Article  CAS  PubMed  Google Scholar 

  83. Acuna-Goycolea C, van den Pol A (2004) Glucagon-like peptide 1 excites hypocretin/orexin neurons by direct and indirect mechanisms: implications for viscera-mediated arousal. J Neurosci 24:8141–8152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gilman CP, Perry T, Furukawa K, Grieg NH, Egan JM, Mattson MP (2003) Glucagon-like peptide 1 modulates calcium responses to glutamate and membrane depolarization in hippocampal neurons. J Neurochem 87(5):1137–1144

    Article  CAS  PubMed  Google Scholar 

  85. Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, O’Regan JP, Deng HX, Rahmani Z (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362(6415):59–62

    Article  CAS  PubMed  Google Scholar 

  86. Radunovic A, Leigh PN (1996) Cu/Zn superoxide dismutase gene mutations in amyotrophic lateral sclerosis: correlation between genotype and clinical features. J Neurol Neurosurg Psychiatry 61(6):565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Saenger S, Holtmann B, Nilges MR, Schroeder S, Hoeflich A, Kletzl H, Spooren W, Ostrowitzki S, Hanania T, Sendtner M, Metzger F (2012) Functional improvement in mouse models of familial amyotrophic lateral sclerosis by PEGylated insulin-like growth factor I treatment depends on disease severity. Amyotroph Lateral Scler 13(5):418–429

    Article  CAS  PubMed  Google Scholar 

  88. Franz CK, Federici T, Yang J, Backus C, Oh SS, Teng Q, Carlton E, Bishop KM, Gasmi M, Bartus RT, Feldman EL (2009) Intraspinal cord delivery of IGF-I mediated by adeno-associated virus 2 is neuroprotective in a rat model of familial ALS. Neurobiol Dis 33(3):473–481

    Article  CAS  PubMed  Google Scholar 

  89. Kaspar BK, Lladó J, Sherkat N, Rothstein JD, Gage FH (2003) Retrograde viral delivery of IGF-1 prolongs survival in a mouse ALS model. Science 301(5634):839–842

    Article  CAS  PubMed  Google Scholar 

  90. Dobrowolny G, Giacinti C, Pelosi L, Nicoletti C, Winn N, Barberi L, Molinaro M, Rosenthal N, Musarò A (2005) Muscle expression of a local Igf-1 isoform protects motor neurons in an ALS mouse model. J Cell Biol 168(2):193–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lepore AC, Haenggeli C, Gasmi M, Bishop KM, Bartus RT, Maragakis NJ, Rothstein JD (2007) Intraparenchymal spinal cord delivery of adeno-associated virus IGF-1 is protective in the SOD1G93A model of ALS. Brain Res 1185:256–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Nagano I, Ilieva H, Shiote M, Murakami T, Yokoyama M, Shoji M, Abe K (2005) Therapeutic benefit of intrathecal injection of insulin-like growth factor-1 in a mouse model of amyotrophic lateral sclerosis. J Neurol Sci 235(1-2):61–68

    Article  CAS  PubMed  Google Scholar 

  93. Knippenberg S, Thau N, Schwabe K, Dengler R, Schambach A, Hass R, Petri S (2012) Intraspinal injection of human umbilical cord blood-derived cells is neuroprotective in a transgenic mouse model of amyotrophic lateral sclerosis. Neurodegener Dis 9(3):107–120

    Article  CAS  PubMed  Google Scholar 

  94. Sun H, Knippenberg S, Thau N, Ragancokova D, Körner S, Huang D, Dengler R, Döhler K, Petri S (2013) Therapeutic potential of N-acetyl-glucagon-like peptide-1 in primary motor neuron cultures derived from non-transgenic and SOD1-G93A ALS mice. Cell Mol Neurobiol 33(3):347–357

    Article  CAS  PubMed  Google Scholar 

  95. Matsuzaki H, Tamatani M, Mitsuda N, Namikawa K, Kiyama H, Miyake SI, Tohyama M (1999) Activation of Akt kinase inhibits apoptosis and changes in Bcl-2 and Bax expression induced by nitric oxide in primary hippocampal neurons. J Neurochem 73:2037–2046

    CAS  PubMed  Google Scholar 

  96. Sun X, Huang L, Zhang M, Sun S, Wu Y (2010) Insulin like growth factor-1 prevents 1-mentyl-4-phenylphyridinium-induced apoptosis in PC12 cells through activation of glycogen synthase kinase-3beta. Toxicology 271(1-2):5–12

    Article  CAS  PubMed  Google Scholar 

  97. Tu H, Xu C, Zhang W, Liu Q, Rondard P, Pin JP, Liu J (2010) GABAB receptor activation protects neurons from apoptosis via IGF-1 receptor transactivation. J Neurosci 30(2):749–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zawada WM, Kirschman DL, Cohen JJ, Heidenreich KA, Freed CR (1996) Growth factors rescue embryonic dopamine neurons from programmed cell death. Exp Neurol 140(1):60–67

    Article  CAS  PubMed  Google Scholar 

  99. Li Y, Chigurupati S, Holloway HW, Mughal M, Tweedie D, Bruestle DA, Mattson MP, Wang Y, Harvey BK, Ray B, Lahiri DK (2012) Exendin-4 ameliorates motor neuron degeneration in cellular and animal models of amyotrophic lateral sclerosis. PLoS One 7(2):e32008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Mohiuddin MS, Himeno T, Inoue R, Miura-Yura E, Yamada Y, Nakai-Shimoda H, Asano S, Kato M, Motegi M, Kondo M, Seino Y (2019) Glucagon-like Peptide-1 receptor agonist protects dorsal root ganglion neurons against oxidative insult. J Diabetes Res 2019:1–10

    Article  CAS  Google Scholar 

  101. Nave K-A (2010) Myelination and the trophic support of long axons. Nat Rev Neurosci 11:275–283

    Article  CAS  PubMed  Google Scholar 

  102. Wilkins A, Chandran S, Compston A (2001) A role for oligodendrocyte-derived IGF-1 in trophic support of cortical neurons. Glia 36(1):48–57

    Article  CAS  PubMed  Google Scholar 

  103. Ye P, D’ercole AJ (1999) Insulin-like growth factor I protects oligodendrocytes from tumor necrosis factor-α-induced injury. Endocrinology 140(7):3063–3072

    Article  CAS  PubMed  Google Scholar 

  104. Barres BA, Hart IK, Coles HSR, Burne JF, Voyvodic JT, Richardson WD, Raff M (1992) Cell death and control of cell survival in the oligodendrocyte lineage. Cell 70(1):31–46

    Article  CAS  PubMed  Google Scholar 

  105. Mozell RL, McMorris FA (1991) Insulin-like growth factor I stimulates oligodendrocyte development and myelination in rat brain aggregate cultures. J Neurosci Res 30(2):382–390

    Article  CAS  PubMed  Google Scholar 

  106. O’Kusky J, Ye P (2012) Neurodevelopmental effects of insulin-like growth factor signaling. Front Neuroendocrinol 33(3):230–251

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Ye P, D’rcole AJ (2006) Insulin-like growth factor actions during development of neural stem cells and progenitors in the central nervous system. J Neurosci Res 83(1):1–6

    Article  CAS  PubMed  Google Scholar 

  108. Hsieh J, Aimone JB, Kaspar BK, Kuwabara T, Nakashima K, Gage FH (2004) IGF-I instructs multipotent adult neural progenitor cells to become oligodendrocytes. J Cell Biol 164(1):111–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Gago N, Avellana-Adalid V, Baron-Van Evercooren A, Schumacher M (2003) Control of cell survival and proliferation of postnatal PSA-NCAM+ progenitors. Mol Cell Neurosci 22(2):162–178

    Article  CAS  PubMed  Google Scholar 

  110. Wlodarczyk A, Holtman IR, Krueger M, Yogev N, Bruttger J, Khorooshi R et al (2017) A novel microglial subset plays a key role in myelinogenesis in developing brain. EMBO J 36:3292–3308. https://doi.org/10.15252/embj.201696056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Hamilton A, Patterson S, Porter D, Gault VA, Holscher C (2011) Novel GLP-1 mimetics developed to treat type 2 diabetes promote progenitor cell proliferation in the brain. J Neurosci Res 89(4):481–489

    Article  CAS  PubMed  Google Scholar 

  112. Bramanti V, Grasso S, Tomassoni D, Traini E, Raciti G, Viola M, Li Volti G, Campisi A, Amenta F, Avola R (2015) Effect of growth factors and steroid hormones on heme oxygenase and cyclin d1 expression in primary astroglial cell cultures. J Neurosci Res 93:521–529

    Article  CAS  PubMed  Google Scholar 

  113. Rawji KS, Mishra MK, Michaels NJ, Rivest S, Stys PK, Yong VW (2016) Immunosenescence of microglia and macrophages: impact on the ageing central nervous system. Brain 139(3):653–661

    Article  PubMed  PubMed Central  Google Scholar 

  114. Lalancette-Hébert M, Gowing G, Simard A, Weng YC, Kriz J (2007) Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. J Neurosci 27(10):2596–2605

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Nadjar A, Berton O, Guo S, Leneuve P, Dovero S, Diguet E, Tison F, Zhao B, Holzenberger M, Bezard E (2009) IGF-1 signaling reduces neuro-inflammatory response and sensitivity of neurons to MPTP. Neurobiol Aging 30(12):2021–2030

    Article  CAS  PubMed  Google Scholar 

  116. Suh HS, Zhao ML, Derico L, Choi N, Lee SC (2013) Insulin-like growth factor 1 and 2 (IGF1, IGF2) expression in human microglia: differential regulation by inflammatory mediators. J Neuroinflammation 10(1):1–12

    Article  CAS  Google Scholar 

  117. Ferger AI, Campanelli L, Reimer V, Muth KN, Merdian I, Ludolph AC, Witting A (2010) Effects of mitochondrial dysfunction on the immunological properties of microglia. J Neuroinflammation 7(1):1–10

    Article  CAS  Google Scholar 

  118. Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91(2):461–553

    Article  CAS  PubMed  Google Scholar 

  119. O’Donnell SL, Frederick TJ, Krady JK, Vannucci SJ, Wood TL (2002) IGF-I and microglia/macrophage proliferation in the ischemic mouse brain. Glia 39(1):85–97

    Article  PubMed  Google Scholar 

  120. Lee CH, Jeon SJ, Cho KS, Jeon SJ, Cho KS, Moon E, Sapkota A, Jun HS, Ryu JH, Choi JW (2018) Activation of glucagon-like peptide-1 receptor promotes neuroprotection in experimental autoimmune encephalomyelitis by reducing neuroinflammatory responses. Mol Neurobiol 55:3007–3020

    Article  CAS  PubMed  Google Scholar 

  121. Wu HY, Tang XQ, Liu H, Mao XF, Wang YX (2018) Both classic Gs-cAMP/PKA/CREB and alternative Gs-cAMP/PKA/p38β/CREB signal pathways mediate exenatide-stimulated expression of M2 microglial markers. J Neuroimmunol 316:17–22

    Article  CAS  PubMed  Google Scholar 

  122. Malaspina A, Puentes F, Amor S (2015) Disease origin and progression in amyotrophic lateral sclerosis: an immunology perspective. Int Immunol 27(3):117–129

    Article  CAS  PubMed  Google Scholar 

  123. Hensley K, Abdel-Moaty H, Hunter J et al. 2006. Primary glia expressing the G93A-SOD1 mutation present a neuroinflammatory in the complete rescue of postnatal motor neurons, Amyotroph Lateral Scler Other Motor

  124. Parakh S, Spencer DM, Halloran MA, Soo KY, Atkin JD (2013) Redox regulation in amyotrophic lateral sclerosis. Oxidative Med Cell Longev 2013:1–12

    Article  CAS  Google Scholar 

  125. Cady J, Koval ED, Benitez BA, Zaidman C, Jockel-Balsarotti J, Allred P, Baloh RH, Ravits J, Simpson E, Appel SH, Pestronk A, Goate AM, Miller TM, Cruchaga C, Harms MB (2014 Apr) TREM2 variant p.R47H as a risk factor for sporadic amyotrophic lateral sclerosis. JAMA Neurol 71(4):449–453. https://doi.org/10.1001/jamaneurol.2013.6237

    Article  PubMed  PubMed Central  Google Scholar 

  126. Beers DR, Henkel JS, Zhao W, Wang J, Huang A, Wen S, Liao B, Appel SH (2011) Endogenous regulatory T lymphocytes ameliorate amyotrophic lateral sclerosis in mice and correlate with disease progression in patients with amyotrophic lateral sclerosis. Brain 134(5):1293–1314

    Article  PubMed  PubMed Central  Google Scholar 

  127. Sta M, Sylva-Steenland RMR, Casula M, De Jong JMBV, Troost D, Aronica E, Baas F (2011) Innate and adaptive immunity in amyotrophic lateral sclerosis: evidence of complement activation. Neurobiol Dis 42(3):211–220

    Article  CAS  PubMed  Google Scholar 

  128. Xiao Q, Zhao W, Beers DR, Yen AA, Xie W, Henkel JS, Appel SH (2007) Mutant SOD1G93A microglia are more neurotoxic relative to wild-type microglia. J Neurochem 102(6):2008–2019

    Article  CAS  PubMed  Google Scholar 

  129. Swerdlow RH (2012) Alzheimer’s disease pathologic cascades: who comes first, what drives what. Neurotox Res 22(3):182–194

    Article  PubMed  Google Scholar 

  130. Chiu LY, Ho FM, Shiah SG, Chang Y, Lin WW (2011) Oxidative stress initiates DNA damager MNNG-induced poly (ADP-ribose) polymerase-1-dependent parthanatos cell death. Biochem Pharmacol 81(3):459–470

    Article  CAS  PubMed  Google Scholar 

  131. Li L, El-Kholy W, Rhodes CJ, Brubaker PL (2005) Glucagon-like peptide-1 protects beta cells from cytokine-induced apoptosis and necrosis: role of protein kinase B. Diabetologia 48(7):1339–1349

    Article  CAS  PubMed  Google Scholar 

  132. Reed JC (1997) Bcl-2 family proteins: regulators of apoptosis and chemoresistance in hematologic malignancies. In Seminars in hematology (Vol. 34 (4 Suppl 5), 9-19).

  133. Krajewski S, Mai JK, Krajewska M, Sikorska M, Mossakowski MJ, Reed JC (1995) Upregulation of bax protein levels in neurons following cerebral ischemia. J Neurosci 15(10):6364–6376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Deshmukh M, Johnson EM Jr (1998) Evidence of a novel event during neuronal death: development of competence-to-die in response to cytoplasmic cytochrome c. Neuron 21(4):695–705

    Article  CAS  PubMed  Google Scholar 

  135. Li Y, Wu H, Khardori R, Song Y-H, Lu YW, Geng Y-J (2009) Insulin-like growth factor-1 receptor activation prevents high glucose-induced mitochondrial dysfunction, cytochrome-c release and apoptosis. Biochem Biophys Res Commun 384(2):259–264. https://doi.org/10.1016/j.bbrc.2009.04.113

    Article  CAS  PubMed  Google Scholar 

  136. Kim C, Park S (2018) IGF-1 protects SH-SY5Y cells against MPP + -induced apoptosis via PI3K/PDK-1/Akt pathway. Endocrine Connections 7(3):443–455. https://doi.org/10.1530/ec-17-0350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Yoon G, Kim Y-K, Song J (2019). Glucagon-like peptide-1 suppresses neuroinflammation and improves neural structure. Pharmacological Research, 104615. doi:https://doi.org/10.1016/j.phrs.2019.104615

  138. Garabadu D, Verma J (2019) Exendin-4 attenuates brain mitochondrial toxicity through PI3K/Akt-dependent pathway in amyloid beta (1–42)-induced cognitive deficit rats. Neurochem Int 128:39–49. https://doi.org/10.1016/j.neuint.2019.04.006

    Article  CAS  PubMed  Google Scholar 

  139. Liu J, Wang F (2017) Role of neuroinflammation in amyotrophic lateral sclerosis: cellular mechanisms and therapeutic implications. Front Immunol 8:1005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Zhou M, Wang CM, Yang WL, Wang P (2013) Microglial CD14 activated by iNOS contributes to neuroinflammation in cerebral ischemia. Brain Res 1506:105–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Henkel JS, Beers DR, Zhao W, Appel SH (2009) Microglia in ALS: the good, the bad, and the resting. J NeuroImmune Pharmacol 4(4):389–398

    Article  PubMed  Google Scholar 

  142. Motani A, Forster L, Tull S, Anggard EE, Ferns GA (1996) Insulin-like growth factor-I modulates monocyte adhesion to EAhy 926 endothelial cells. Int J Exp Pathol 77:31–35. https://doi.org/10.1046/j.1365-2613.1996.960098.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Bluthé RM, Kelley KW, Dantzer R (2006) Effects of insulin-like growth factor-I on cytokine-induced sickness behavior in mice. Brain Behav Immun 20:57–63. https://doi.org/10.1016/j.bbi.2005.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Palin K, Bluthé RM, McCusker RH, Moos F, Dantzer R, Kelley KW (2007) TNFα-induced sickness behavior in mice with functional 55 kD TNF receptors is blocked by central IGF-I. J Neuroimmunol 187:55–60. https://doi.org/10.1016/j.jneuroim.2007.04.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Bellini MJ, Hereñú CB, Goya RG, Garcia-Segura LM (2011) Insulin-like growth factor-I gene delivery to astrocytes reduces their inflammatory response to lipopolysaccharide. J Neuroinflammation 8:21. https://doi.org/10.1186/1742-2094-8-21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Cui S-S, Feng XB, Zhang BH, Xia ZY, Zhan LY (2020) Exendin-4 attenuates pain-induced cognitive impairment by alleviating hippocampal neuroinflammation in a rat model of spinal nerve ligation. Neural Regen Res 15(7):1333–1339

    Article  PubMed  PubMed Central  Google Scholar 

  147. Diz-Chaves Y, Toba L, Fandiño J, González-Matías LC, Garcia-Segura LM, Mallo F (2018) The GLP-1 analog, liraglutide prevents the increase of proinflammatory mediators in the hippocampus of male rat pups submitted to maternal perinatal food restriction. J Neuroinflammation 15(1):337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Kim DS, Choi HI, Wang Y, Luo Y, Hoffer BJ, Greig NH (2017) A new treatment strategy for Parkinson’s disease through the gut–brain axis: the glucagon-like peptide-1 receptor pathway. Cell Transplant 26(9):1560–1571

    Article  PubMed  PubMed Central  Google Scholar 

  149. Bristol LA, Rothstein JD (1996) Glutamate transporter gene expression in amyotrophic lateral sclerosis motor cortex. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society 39(5):676–679

    Article  CAS  Google Scholar 

  150. Olloquequi J, Cornejo-Córdova E, Verdaguer E, Soriano FX, Binvignat O, Auladell C, Camins A (2018) Excitotoxicity in the pathogenesis of neurological and psychiatric disorders: therapeutic implications. J Psychopharmacol 32(3):265–275

    Article  CAS  PubMed  Google Scholar 

  151. Grosskreutz J, Van Den Bosch L, Keller BU (2010) Calcium dysregulation in amyotrophic lateral sclerosis. Cell Calcium 47(2):165–174

    Article  CAS  PubMed  Google Scholar 

  152. Wang Y, Wang W, Li D, Li M, Wang P, Wen J, Liang M, Su B, Yin Y (2014) IGF-1 Alleviates NMDA-induced excitotoxicity in cultured hippocampal neurons against autophagy via the NR2B/PI3K-AKT-mTOR pathway. J Cell Physiol 229(11):1618–1629. https://doi.org/10.1002/jcp.24607

    Article  CAS  PubMed  Google Scholar 

  153. Li Y, Sun W, Han S, Li J, Ding S, Wang W, Yin Y (2016) IGF-1-involved negative feedback of NR2B NMDA subunits protects cultured hippocampal neurons against NMDA-induced excitotoxicity. Mol Neurobiol 54(1):684–696. https://doi.org/10.1007/s12035-015-9647-7

    Article  CAS  PubMed  Google Scholar 

  154. Ness JK, Wood TL (2002) Insulin-like growth factor I, but not neurotrophin-3, sustains Akt activation and provides long-term protection of immature oligodendrocytes from glutamate-mediated apoptosis. Mol Cell Neurosci 20(3):476–488

    Article  CAS  PubMed  Google Scholar 

  155. Ness JK, Scaduto RC Jr, Wood TL (2004) IGF-I prevents glutamate-mediated bax translocation and cytochrome C release in O4+ oligodendrocyte progenitors. Glia 46(2):183–194

    Article  PubMed  Google Scholar 

  156. Gilman CP, Perry TA, Furukawa K, Grieg NH, Egan JM, Mattson MP (2003). Glucagon-like peptide 1 modulates calcium responses to glutamate and membrane depolarization in hippocampal neurons. 87(5), 1137–1144. doi:10.1046/j.1471-4159.2003.02073.x

  157. Alam MM, Minj E, Yadav RK, Mehan S (2020) Neuroprotective potential of adenyl cyclase/cAMP/CREB and mitochondrial CoQ10 activator in amyotrophic lateral sclerosis rats. Current Bioactive Compounds 16:1. https://doi.org/10.2174/1573407216999200723113054

    Article  Google Scholar 

  158. Hardiman O, Al-Chalabi A, Chio A, Corr EM, Logroscino G, Robberecht W, Shaw PJ, Simmons Z, Van Den Berg LH (2017) Amyotrophic lateral sclerosis. Nature reviews Disease primers 3(1):1–19

    Google Scholar 

  159. D’Amico E, Factor-Litvak P, Santella RM, Mitsumoto H (2013) Clinical perspective on oxidative stress in sporadic amyotrophic lateral sclerosis. Free Radic Biol Med 65:509–527

    Article  PubMed  CAS  Google Scholar 

  160. Chico L, Modena M, Gerfo AL, Ricci G, Ienco EC, Ryskalin L, Fornai F, Siciliano G (2017) Cross-talk between pathogenic mechanisms in neurodegeneration: the role of oxidative stress in Amyotrophic Lateral Sclerosis. Arch Ital Biol 155(4):131–141

    PubMed  Google Scholar 

  161. Genis L, Dávila D, Fernandez S, Pozo-Rodrigálvarez A, Martínez-Murillo R, Torres-Aleman I (2014) Astrocytes require insulin-like growth factor I to protect neurons against oxidative injury. F1000Research, 3.

  162. Dávila D, Torres-Aleman I (2008) Neuronal death by oxidative stress involves activation of FOXO3 through a two-arm pathway that activates stress kinases and attenuates insulin-like growth factor I signaling. Mol Biol Cell 19(5):2014–2025. https://doi.org/10.1091/mbc.e07-08-0811

    Article  PubMed  PubMed Central  Google Scholar 

  163. Duarte AI, Santos P, Oliveira CR, Santos MS, Rego AC (2008) Insulin neuroprotection against oxidative stress is mediated by Akt and GSK-3β signaling pathways and changes in protein expression. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1783(6):994–1002

    Article  CAS  Google Scholar 

  164. Wooten MW (1999) Function for NF-kB in neuronal survival: regulation by atypical protein kinase C. J Neurosci Res 58(5):607–611

    Article  CAS  PubMed  Google Scholar 

  165. Carro E, Trejo JL, Gerber A, Loetscher H, Torrado J, Metzger F, Torres-Aleman I (2006) Therapeutic actions of insulin-like growth factor I on APP/PS2 mice with severe brain amyloidosis. Neurobiol Aging 27:1250–1257

    Article  CAS  PubMed  Google Scholar 

  166. Gasparini L, Gouras GK, Wang R, Gross RS, Beal MF, Greengard P, Xu H (2001) Stimulation of beta-amyloid precursor protein trafficking by insulin reduces intraneuronal beta-amyloid and requires mitogen-activated protein kinase signaling. J Neurosci 21:2561–2570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Chung HY, Lee EK, Choi YJ, Kim JM, Kim DH, Zou Y, Kim CH, Lee J, Kim HS, Kim ND, Jung JH (2011) Molecular inflammation as an underlying mechanism of the aging process and age-related diseases. J Dent Res 90(7):830–840

    Article  CAS  PubMed  Google Scholar 

  168. Kao SY (2009) Rescue of alpha-synuclein cytotoxicity by insulin-like growth factors. Biochem Biophys Res Commun 385:434–438

    Article  CAS  PubMed  Google Scholar 

  169. Guan J, Krishnamurthi R, Waldvogel HJ, Faull RL, Clark R, Gluckman P (2000) N-terminal tripeptide of IGF-1 (GPE) prevents the loss of TH positive neurons after 6-OHDA induced nigral lesion in rats. Brain Res 859:286–292

    Article  CAS  PubMed  Google Scholar 

  170. Ebert AD, Beres AJ, Barber AE, Svendsen CN (2008) Human neural progenitor cells over-expressing IGF-1 protect dopamine neurons and restore function in a rat model of Parkinson’s disease. Exp Neurol 209:213–223

    Article  CAS  PubMed  Google Scholar 

  171. Wang L, Yang HJ, Xia YY, Feng ZW (2010) Insulin-like growth factor 1 protects human neuroblastoma cells SH-EP1 against MPP+-induced apoptosis by AKT/GSK-3beta/JNK signaling. Apoptosis 15(12):1470–1479. https://doi.org/10.1007/s10495-010-0547-z

    Article  CAS  PubMed  Google Scholar 

  172. Ribeiro MJDC (2014) Oxidative stress in Huntington’s disease knock-in striatal cells (Doctoral dissertation).

  173. Bozdagi O, Tavassoli T, Buxbaum JD (2013 Apr 27) Insulin-like growth factor-1 rescues synaptic and motor deficits in a mouse model of autism and developmental delay. Mol Autism 4(1):9. https://doi.org/10.1186/2040-2392-4-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Li W, Quigley L, Yao DL, Hudson LD, Brenner M, Zhang BJ, Brocke S, McFarland H, Webster HD (1998) Chronic relapsing experimental autoimmune encephalomyelitis: effects of insulin-like growth factor-I treatment on clinical deficits, lesion severity, glial responses, and blood brain barrier defects. J Neuropathol Exp Neurol 57(5):426–438

    Article  CAS  PubMed  Google Scholar 

  175. McClean PL, Parthsarathy V, Faivre E, Hölscher C (2011 Apr 27) The diabetes drug liraglutide prevents degenerative processes in a mouse model of Alzheimer’s disease. J Neurosci 31(17):6587–6594. https://doi.org/10.1523/JNEUROSCI.0529-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Teramoto S, Miyamoto N, Yatomi K, Tanaka Y, Oishi H, Arai H, Hattori N, Urabe T (2011) Exendin-4, a glucagon-like peptide-1 receptor agonist, provides neuroprotection in mice transient focal cerebral ischemia. J Cereb Blood Flow Metab 31(8):1696–1705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Perry T, Holloway HW, Weerasuriya A, Mouton PR, Duffy K, Mattison JA, Greig NH (2007) Evidence of GLP-1-mediated neuroprotection in an animal model of pyridoxine-induced peripheral sensory neuropathy. Exp Neurol 203(2):293–301

    Article  CAS  PubMed  Google Scholar 

  178. Niikura T, Hashimoto Y, Okamoto T, Abe Y, Yasukawa T, Kawasumi M, Hiraki T, Kita Y, Terashita K, Kouyama K, Nishimoto I (2001) Insulin-like growth factor I (IGF-I) protects cells from apoptosis by Alzheimer’s V642I mutant amyloid precursor protein through IGF-I receptor in an IGF-binding protein-sensitive manner. J Neurosci 21(6):1902–1910. https://doi.org/10.1523/jneurosci.21-06-01902.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Offen D, Shtaif B, Hadad D, Weizman A, Melamed E, Gil-Ad I (2001) Protective effect of insulin-like-growth-factor-1 against dopamine-induced neurotoxicity in human and rodent neuronal cultures: possible implications for Parkinson’s disease. Neurosci Lett 316:129–132. https://doi.org/10.1016/s0304-3940(01)02344-8

    Article  CAS  PubMed  Google Scholar 

  180. Parsarathy V, Holscher C (2011) The novel GLP1 analogue, liraglutide, reduces inflammation in a mouse model of brain tissue injury. In Washington, DC: Society for Neuroscience Annual Meeting.

  181. Qin Z, Sun Z, Huang J, Hu Y, Wu Z, Mei B (2008) Mutated recombinant human glucagon-like peptide-1 protects SH-SY5Y cells from apoptosis induced by amyloid-β peptide (1–42). Neurosci Lett 444(3):217–221

    Article  CAS  PubMed  Google Scholar 

  182. Ma T, Du X, Pick JE, Sui G, Brownlee M, Klann E (2012) Glucagon-like peptide-1 cleavage product GLP-1(9-36) amide rescues synaptic plasticity and memory deficits in Alzheimer’s disease model mice. J Neurosci 32(40):13701–13708. https://doi.org/10.1523/jneurosci.2107-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Bomfim TR, Forny-Germano L, Sathler LB, Brito-Moreira J, Houzel JC, Decker H, Silverman MA, Kazi H, Melo HM, McClean PL, Holscher C (2012) An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer’s disease–associated Aβ oligomers. J Clin Invest 122(4):1339–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Li Y, Duffy KB, Ottinger MA, Ray B, Bailey JA, Holloway HW, Tweedie D, Perry T, Mattson MP, Kapogiannis D, Sambamurti K (2010) GLP-1 receptor stimulation reduces amyloid-β peptide accumulation and cytotoxicity in cellular and animal models of Alzheimer’s disease. J Alzheimers Dis 19(4):1205–1219

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Kim S, Moon M, Park S (2009 Sep 1) Exendin-4 protects dopaminergic neurons by inhibition of microglial activation and matrix metalloproteinase-3 expression in an animal model of Parkinson’s disease. J Endocrinol 202(3):431–439

    Article  CAS  PubMed  Google Scholar 

  186. Harkavyi A, Abuirmeileh A, Lever R, Kingsbury AE, Biggs CS, Whitton PS (2008) Glucagon-like peptide 1 receptor stimulation reverses key deficits in distinct rodent models of Parkinson’s disease. J Neuroinflammation 5(1):1–9

    Article  CAS  Google Scholar 

  187. Wang Y, Wang W, Li D, Li M, Wang P, Wen J, Liang M, Su B, Yin Y (2014 Nov) IGF-1 alleviates NMDA-induced excitotoxicity in cultured hippocampal neurons against autophagy via the NR2B/PI3K-AKT-mTOR pathway. J Cell Physiol 229(11):1618–1629. https://doi.org/10.1002/jcp.24607

    Article  CAS  PubMed  Google Scholar 

  188. D’Amico M, Di Filippo C, Marfella R, Abbatecola AM, Ferraraccio F, Rossi F et al (2010) Long-term inhibition of dipeptidyl peptidase-4 in Alzheimer’s prone mice. Exp Gerontol 45:202–207

    Article  PubMed  CAS  Google Scholar 

  189. Caroni P (1993 Aug 27) Activity-sensitive signaling by muscle-derived insulin-like growth factors in the developing and regenerating neuromuscular system. Ann N Y Acad Sci 692:209–222. https://doi.org/10.1111/j.1749-6632.1993.tb26219.x

    Article  CAS  PubMed  Google Scholar 

  190. Caroni P, Grandes P (1990 Apr) Nerve sprouting in innervated adult skeletal muscle induced by exposure to elevated levels of insulin-like growth factors. J Cell Biol 110(4):1307–1317. https://doi.org/10.1083/jcb.110.4.1307

    Article  CAS  PubMed  Google Scholar 

  191. Hantaï D, Akaaboune M, Lagord C, Murawsky M, Houenou LJ, Festoff BW, Vaught JL, Rieger F, Blondet B (1995 May) Beneficial effects of insulin-like growth factor-I on wobbler mouse motoneuron disease. J Neurol Sci 129(Suppl):122–126. https://doi.org/10.1016/0022-510x(95)00081-c

    Article  PubMed  Google Scholar 

  192. Lai EC, Felice KJ, Festoff BW, Gawel MJ, Gelinas DF, Kratz R, Murphy MF, Natter HM, Norris FH, Rudnicki SA (1997) Effect of recombinant human insulin-like growth factor-I on progression of ALS: a placebo-controlled study. Neurology 49(6):1621–1630

    Article  CAS  PubMed  Google Scholar 

  193. Borasio GD, Robberecht W, Leigh PN, Emile J, Guiloff RJ, Jerusalem F, Silani V, Vos PE, Wokke JH, Dobbins T (1998) A placebo-controlled trial of insulin-like growth factor-i in amyotrophic lateral sclerosis. European als/igf-i study group. Neurology 51:583–586

    Article  CAS  PubMed  Google Scholar 

  194. Beauverd M, Mitchell JD, Wokke JH, Borasio GD (2012) Recombinant human insulin-like growth factor I (rhIGF-I) for the treatment of amyotrophic lateral sclerosis/motor neuron disease. The Cochrane database of systematic reviews 11:CD002064. https://doi.org/10.1002/14651858.CD002064.pub3

    Article  PubMed  Google Scholar 

  195. Sorenson E, Windbank AJ, Mandrekar JN, Bamlet WR, Appel SH, Armon C, Barkhaus PE, Bosch P, Boylan K, David WS, Feldman E (2008) Subcutaneous IGF-1 is not beneficial in 2-year ALS trial. Neurology 71(22):1770–1775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Vincent AM, Mobley BC, Hiller A, Feldman EL (2004) Igf-i prevents glutamate-induced motor neuron programmed cell death. Neurobiol Dis 16:407–416

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the Chairman, Mr. Parveen Garg, and Director, Dr. G. D. Gupta, ISF College of Pharmacy, Moga (Punjab), India, for their great vision and support.

Author information

Authors and Affiliations

Authors

Contributions

AS (Ambika Shandilya) involved in investigation, writing - original draft, review writing; SM (Sidharth Mehan) has contributed towards conceptualization, resource gathering, supervision, writing - review and critical editions. All authors read and approved the manuscript and all data were generated in-house and that no paper mill was used.

Corresponding author

Correspondence to Sidharth Mehan.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

PUBMED: https://pubmed.ncbi.nlm.nih.gov/?term=sidharth+mehan&sort=date

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shandilya, A., Mehan, S. Dysregulation of IGF-1/GLP-1 signaling in the progression of ALS: potential target activators and influences on neurological dysfunctions. Neurol Sci 42, 3145–3166 (2021). https://doi.org/10.1007/s10072-021-05328-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-021-05328-6

Keywords

Navigation