Skip to main content

Advertisement

Log in

Activation of Glucagon-Like Peptide-1 Receptor Promotes Neuroprotection in Experimental Autoimmune Encephalomyelitis by Reducing Neuroinflammatory Responses

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The signaling axis of glucagon-like peptide-1 (GLP-1)/GLP-1 receptor (GLP-1R) has been an important component in overcoming diabetes, and recent reports have uncovered novel beneficial roles of this signaling axis in central nervous system (CNS) disorders, such as Alzheimer’s disease, Parkinson’s disease, and cerebral ischemia, accelerating processes for exendin-4 repositioning. Here, we studied whether multiple sclerosis (MS) could be a complement to the CNS disorders that are associated with the GLP-1/GLP-1R signaling axis. Both components of the signaling axis, GLP-1 and GLP-1R proteins, are expressed in neurons, astrocytes, and microglia in the spinal cord of normal mice. In particular, they are abundant in Iba1-positive microglia. Upon challenge by experimental autoimmune encephalomyelitis (EAE), an animal model of MS, the mRNA expression of both GLP-1 and GLP-1R was markedly downregulated in EAE-symptomatic spinal cords, indicating attenuated activity of GLP-1/GLP-1R signaling in EAE. Such a downregulation obviously occurred in LPS-stimulated rat primary microglia, a main cell type to express both GLP-1 and GLP-1R, further indicating attenuated activity of GLP-1/GLP-1R signaling in activated microglia. To investigate whether increased activity of GLP-1R has a therapeutic benefit, exendin-4 (5 μg/kg, i.p.), a GLP-1R agonist, was administered daily to EAE-symptomatic mice. Exendin-4 administration to symptomatic EAE mice significantly improved the clinical signs of the disease, along with the reversal of histopathological sequelae such as cell accumulation, demyelination, astrogliosis, microglial activation, and morphological transformation of activated microglia in the injured spinal cord. Such an improvement by exendin-4 was comparable to that by FTY720 (3 mg/kg, i.p.), a drug for MS. The neuroprotective effects of exendin-4 against EAE were also associated with decreased mRNA expression of proinflammatory cytokines, such as interleukin (IL)-17, IL-1β, IL-6, and tumor necrosis factor (TNF)-α, all of which are usually upregulated in injured sites of the EAE spinal cord. Interestingly, exendin-4 exposure similarly reduced mRNA levels of IL-1β and TNF-α in LPS-stimulated microglia. Furthermore, exendin-4 administration significantly attenuated activation of NF-κB signaling in EAE spinal cord and LPS-stimulated microglia. Collectively, the current study demonstrates the therapeutic potential of exendin-4 for MS by reducing immune responses in the CNS, highlighting the importance of the GLP-1/GLP-1R signaling axis in the development of a novel therapeutic strategy for MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ahren B, Schmitz O (2004) GLP-1 receptor agonists and DPP-4 inhibitors in the treatment of type 2 diabetes. Horm Metab Res 36(11–12):867–876

    Article  CAS  PubMed  Google Scholar 

  2. Bond A (2006) Exenatide (Byetta) as a novel treatment option for type 2 diabetes mellitus. PRO 19(3):281–284

    Google Scholar 

  3. Larsen PJ, Tang-Christensen M, Holst JJ, Orskov C (1997) Distribution of glucagon-like peptide-1 and other preproglucagon-derived peptides in the rat hypothalamus and brainstem. Neuroscience 77(1):257–270

    Article  CAS  PubMed  Google Scholar 

  4. Jin SL, Han VK, Simmons JG, Towle AC, Lauder JM, Lund PK (1988) Distribution of glucagonlike peptide I (GLP-I), glucagon, and glicentin in the rat brain: an immunocytochemical study. J Comp Neurol 271(4):519–532

    Article  CAS  PubMed  Google Scholar 

  5. Holscher C (2014) Central effects of GLP-1: new opportunities for treatments of neurodegenerative diseases. J Endocrinol 221(1):T31–T41

    Article  CAS  PubMed  Google Scholar 

  6. Qin Z, Sun Z, Huang J, Hu Y, Wu Z, Mei B (2008) Mutated recombinant human glucagon-like peptide-1 protects SH-SY5Y cells from apoptosis induced by amyloid-beta peptide (1-42). Neurosci Lett 444(3):217–221

    Article  CAS  PubMed  Google Scholar 

  7. Iwai T, Ito S, Tanimitsu K, Udagawa S, Oka J (2006) Glucagon-like peptide-1 inhibits LPS-induced IL-1beta production in cultured rat astrocytes. Neurosci Res 55(4):352–360

    Article  CAS  PubMed  Google Scholar 

  8. Kumar G, Iadav RS (2012) Induction of cytomixis affects microsporogenesis in Sesamum indicum L. (Pedaliaceae). Ontogenez 43(4):261–267

    CAS  PubMed  Google Scholar 

  9. During MJ, Cao L, Zuzga DS, Francis JS, Fitzsimons HL, Jiao X, Bland RJ, Klugmann M et al (2003) Glucagon-like peptide-1 receptor is involved in learning and neuroprotection. Nat Med 9(9):1173–1179

    Article  CAS  PubMed  Google Scholar 

  10. Bassil F, Fernagut PO, Bezard E, Meissner WG (2014) Insulin, IGF-1 and GLP-1 signaling in neurodegenerative disorders: targets for disease modification? Prog Neurobiol 118:1–18

    Article  CAS  PubMed  Google Scholar 

  11. Rampersaud N, Harkavyi A, Giordano G, Lever R, Whitton J, Whitton P (2012) Exendin-4 reverts behavioural and neurochemical dysfunction in a pre-motor rodent model of Parkinson's disease with noradrenergic deficit. Br J Pharmacol 167(7):1467–1479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li Y, Chigurupati S, Holloway HW, Mughal M, Tweedie D, Bruestle DA, Mattson MP, Wang Y et al (2012) Exendin-4 ameliorates motor neuron degeneration in cellular and animal models of amyotrophic lateral sclerosis. PLoS One 7(2):e32008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen S, Liu AR, An FM, Yao WB, Gao XD (2012) Amelioration of neurodegenerative changes in cellular and rat models of diabetes-related Alzheimer’s disease by exendin-4. Age (Dordr) 34(5):1211–1224

    Article  CAS  Google Scholar 

  14. Eakin K, Li Y, Chiang YH, Hoffer BJ, Rosenheim H, Greig NH, Miller JP (2013) Exendin-4 ameliorates traumatic brain injury-induced cognitive impairment in rats. PLoS One 8(12):e82016

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kim S, Moon M, Park S (2009) Exendin-4 protects dopaminergic neurons by inhibition of microglial activation and matrix metalloproteinase-3 expression in an animal model of Parkinson’s disease. J Endocrinol 202(3):431–439

    Article  CAS  PubMed  Google Scholar 

  16. Darsalia V, Mansouri S, Ortsater H, Olverling A, Nozadze N, Kappe C, Iverfeldt K, Tracy LM et al (2012) Glucagon-like peptide-1 receptor activation reduces ischaemic brain damage following stroke in type 2 diabetic rats. Clin Sci 122(10):473–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Munoz-Culla M, Irizar H, Otaegui D (2013) The genetics of multiple sclerosis: review of current and emerging candidates. Appl Clin Genet 6:63–73

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Minagar A, Shapshak P, Fujimura R, Ownby R, Heyes M, Eisdorfer C (2002) The role of macrophage/microglia and astrocytes in the pathogenesis of three neurologic disorders: HIV-associated dementia, Alzheimer disease, and multiple sclerosis. J Neurol Sci 202(1–2):13–23

    Article  CAS  PubMed  Google Scholar 

  19. di Penta A, Moreno B, Reix S, Fernandez-Diez B, Villanueva M, Errea O, Escala N, Vandenbroeck K et al (2013) Oxidative stress and proinflammatory cytokines contribute to demyelination and axonal damage in a cerebellar culture model of neuroinflammation. PLoS One 8(2):e54722

    Article  PubMed  PubMed Central  Google Scholar 

  20. Renno T, Krakowski M, Piccirillo C, Lin JY, Owens T (1995) TNF-alpha expression by resident microglia and infiltrating leukocytes in the central nervous system of mice with experimental allergic encephalomyelitis. Regulation by Th1 cytokines. J Immunol 154(2):944–953

    CAS  PubMed  Google Scholar 

  21. Rasmussen S, Imitola J, Ayuso-Sacido A, Wang Y, Starossom SC, Kivisakk P, Zhu B, Meyer M et al (2011) Reversible neural stem cell niche dysfunction in a model of multiple sclerosis. Ann Neurol 69(5):878–891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Popovic N, Schubart A, Goetz BD, Zhang SC, Linington C, Duncan ID (2002) Inhibition of autoimmune encephalomyelitis by a tetracycline. Ann Neurol 51(2):215–223

    Article  CAS  PubMed  Google Scholar 

  23. Choi JW, Gardell SE, Herr DR, Rivera R, Lee CW, Noguchi K, Teo ST, Yung YC et al (2011) FTY720 (fingolimod) efficacy in an animal model of multiple sclerosis requires astrocyte sphingosine 1-phosphate receptor 1 (S1P1) modulation. P Natl Acad Sci USA 108(2):751–756

    Article  CAS  Google Scholar 

  24. Jackson SJ, Giovannoni G, Baker D (2011) Fingolimod modulates microglial activation to augment markers of remyelination. J Neuroinflamm 8:76

    Article  CAS  Google Scholar 

  25. Gong N, Xiao Q, Zhu B, Zhang CY, Wang YC, Fan H, Ma AN, Wang YX (2014) Activation of spinal glucagon-like peptide-1 receptors specifically suppresses pain hypersensitivity. J Neurosci 34(15):5322–5334

    Article  PubMed  Google Scholar 

  26. Kappe C, Tracy LM, Patrone C, Iverfeldt K, Sjoholm A (2012) GLP-1 secretion by microglial cells and decreased CNS expression in obesity. J Neuroinflamm 9:276

    Article  CAS  Google Scholar 

  27. Darsalia V, Hua S, Larsson M, Mallard C, Nathanson D, Nystrom T, Sjoholm A, Johansson ME et al (2014) Exendin-4 reduces ischemic brain injury in normal and aged type 2 diabetic mice and promotes microglial M2 polarization. PLoS One 9(8):e103114

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sharma A, Sorenby A, Wernerson A, Efendic S, Kumagai-Braesch M, Tibell A (2006) Exendin-4 treatment improves metabolic control after rat islet transplantation to athymic mice with streptozotocin-induced diabetes. Diabetologia 49(6):1247–1253

    Article  CAS  PubMed  Google Scholar 

  29. Gaire BP, Kwon OW, Park SH, Chun KH, Kim SY, Shin DY, Choi JW (2015) Neuroprotective effect of 6-paradol in focal cerebral ischemia involves the attenuation of neuroinflammatory responses in activated microglia. PLoS One 10(3):e0120203

    Article  PubMed  PubMed Central  Google Scholar 

  30. Gao Z, Tsirka SE (2011) Animal models of MS reveal multiple roles of microglia in disease pathogenesis. Neurol Res Int 2011:383087

    PubMed  PubMed Central  Google Scholar 

  31. Han MH, Hwang SI, Roy DB, Lundgren DH, Price JV, Ousman SS, Fernald GH, Gerlitz B et al (2008) Proteomic analysis of active multiple sclerosis lesions reveals therapeutic targets. Nature 451(7182):1076–1081

    Article  CAS  PubMed  Google Scholar 

  32. Lock C, Hermans G, Pedotti R, Brendolan A, Schadt E, Garren H, Langer-Gould A, Strober S et al (2002) Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat Med 8(5):500–508

    Article  CAS  PubMed  Google Scholar 

  33. Mc Guire C, Prinz M, Beyaert R, van Loo G (2013) Nuclear factor kappa B (NF-kappaB) in multiple sclerosis pathology. Trends Mol Med 19(10):604–613

    Article  CAS  PubMed  Google Scholar 

  34. Hoesel B, Schmid JA (2013) The complexity of NF-kappaB signaling in inflammation and cancer. Mol Cancer 12:86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Campos RV, Lee YC, Drucker DJ (1994) Divergent tissue-specific and developmental expression of receptors for glucagon and glucagon-like peptide-1 in the mouse. Endocrinology 134(5):2156–2164

    Article  CAS  PubMed  Google Scholar 

  36. Kagansky N, Levy S, Knobler H (2001) The role of hyperglycemia in acute stroke. Arch Neurol 58(8):1209–1212

    Article  CAS  PubMed  Google Scholar 

  37. Li Y, Tweedie D, Mattson MP, Holloway HW, Greig NH (2010) Enhancing the GLP-1 receptor signaling pathway leads to proliferation and neuroprotection in human neuroblastoma cells. J Neurochem 113(6):1621–1631

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Perry T, Holloway HW, Weerasuriya A, Mouton PR, Duffy K, Mattison JA, Greig NH (2007) Evidence of GLP-1-mediated neuroprotection in an animal model of pyridoxine-induced peripheral sensory neuropathy. Exp Neurol 203(2):293–301

    Article  CAS  PubMed  Google Scholar 

  39. Cork SC, Richards JE, Holt MK, Gribble FM, Reimann F, Trapp S (2015) Distribution and characterisation of glucagon-like peptide-1 receptor expressing cells in the mouse brain. Mol Metab 4(10):718–731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chowen JA, de Fonseca FR, Alvarez E, Navarro M, Garcia-Segura LM, Blazquez E (1999) Increased glucagon-like peptide-1 receptor expression in glia after mechanical lesion of the rat brain. Neuropeptides 33(3):212–215

    Article  CAS  PubMed  Google Scholar 

  41. Darsalia V, Ortsater H, Olverling A, Darlof E, Wolbert P, Nystrom T, Klein T, Sjoholm A et al (2013) The DPP-4 inhibitor linagliptin counteracts stroke in the normal and diabetic mouse brain: a comparison with glimepiride. Diabetes 62(4):1289–1296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hamilton A, Holscher C (2009) Receptors for the incretin glucagon-like peptide-1 are expressed on neurons in the central nervous system. Neuroreport 20(13):1161–1166

    Article  CAS  PubMed  Google Scholar 

  43. Li Y, Perry T, Kindy MS, Harvey BK, Tweedie D, Holloway HW, Powers K, Shen H et al (2009) GLP-1 receptor stimulation preserves primary cortical and dopaminergic neurons in cellular and rodent models of stroke and parkinsonism. P Natl Acad Sci USA 106(4):1285–1290

    Article  CAS  Google Scholar 

  44. Teramoto S, Miyamoto N, Yatomi K, Tanaka Y, Oishi H, Arai H, Hattori N, Urabe T (2011) Exendin-4, a glucagon-like peptide-1 receptor agonist, provides neuroprotection in mice transient focal cerebral ischemia. J Cerebr Blood F Met 31(8):1696–1705

    Article  CAS  Google Scholar 

  45. Lee CH, Yan B, Yoo KY, Choi JH, Kwon SH, Her S, Sohn Y, Hwang IK et al (2011) Ischemia-induced changes in glucagon-like peptide-1 receptor and neuroprotective effect of its agonist, exendin-4, in experimental transient cerebral ischemia. J Neurosci Res 89(7):1103–1113

    Article  CAS  PubMed  Google Scholar 

  46. Ohshima RHK, Holsher C, Seki K (2015) Age-related decrease in glucagon- like peptide-1 in mouse prefrontal cortext but not in hippocampus despite the preservation of its receptor. Am J BioScience 1:11–27

    Article  Google Scholar 

  47. Lee J, Hong SW, Chae SW, Kim DH, Choi JH, Bae JC, Park SE, Rhee EJ et al (2012) Exendin-4 improves steatohepatitis by increasing Sirt1 expression in high-fat diet-induced obese C57BL/6J mice. PLoS One 7(2):e31394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Foster CA, Mechtcheriakova D, Storch MK, Balatoni B, Howard LM, Bornancin F, Wlachos A, Sobanov J et al (2009) FTY720 rescue therapy in the dark agouti rat model of experimental autoimmune encephalomyelitis: expression of central nervous system genes and reversal of blood-brain-barrier damage. Brain Pathol 19(2):254–266

    Article  CAS  PubMed  Google Scholar 

  49. McClean PL, Parthsarathy V, Faivre E, Holscher C (2011) The diabetes drug liraglutide prevents degenerative processes in a mouse model of Alzheimer's disease. J Neurosci 31(17):6587–6594

    Article  CAS  PubMed  Google Scholar 

  50. Himeno T, Kamiya H, Naruse K, Harada N, Ozaki N, Seino Y, Shibata T, Kondo M et al (2011) Beneficial effects of exendin-4 on experimental polyneuropathy in diabetic mice. Diabetes 60(9):2397–2406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Iwai T, Sawabe T, Tanimitsu K, Suzuki M, Sasaki-Hamada S, Oka J (2014) Glucagon-like peptide-1 protects synaptic and learning functions from neuroinflammation in rodents. J Neurosci Res 92(4):446–454

    Article  CAS  PubMed  Google Scholar 

  52. Parthsarathy V, Holscher C (2013) The type 2 diabetes drug liraglutide reduces chronic inflammation induced by irradiation in the mouse brain. Eur J Pharmacol 700(1–3):42–50

    Article  CAS  PubMed  Google Scholar 

  53. Kuroki T, Tanaka R, Shimada Y, Yamashiro K, Ueno Y, Shimura H, Urabe T, Hattori N (2016) Exendin-4 inhibits matrix metalloproteinase-9 activation and reduces infarct growth after focal cerebral ischemia in hyperglycemic mice. Stroke 47(5):1328–1335

    Article  CAS  PubMed  Google Scholar 

  54. Tam WY, Ma CH (2014) Bipolar/rod-shaped microglia are proliferating microglia with distinct M1/M2 phenotypes. Sci Rep-UK 4:7279

    Article  CAS  Google Scholar 

  55. Crain JM, Nikodemova M, Watters JJ (2013) Microglia express distinct M1 and M2 phenotypic markers in the postnatal and adult central nervous system in male and female mice. J Neurosci Res 91(9):1143–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Xia CY, Zhang S, Gao Y, Wang ZZ, Chen NH (2015) Selective modulation of microglia polarization to M2 phenotype for stroke treatment. Int Immunopharmacol 25(2):377–382

    Article  CAS  PubMed  Google Scholar 

  57. Ponomarev ED, Shriver LP, Maresz K, Dittel BN (2005) Microglial cell activation and proliferation precedes the onset of CNS autoimmunity. J Neurosci Res 81(3):374–389

    Article  CAS  PubMed  Google Scholar 

  58. Guo C, Huang T, Chen A, Chen X, Wang L, Shen F, Gu X (2016) Glucagon-like peptide 1 improves insulin resistance in vitro through anti-inflammation of macrophages. Braz J Med Biol Res 49(12):e5826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lee YS, Jun HS (2016) Anti-inflammatory effects of GLP-1-based therapies beyond glucose control. Mediat Inflamm 2016:3094642

    Google Scholar 

  60. Jia Y, Jing J, Bai Y, Li Z, Liu L, Luo J, Liu M, Chen H (2011) Amelioration of experimental autoimmune encephalomyelitis by plumbagin through down-regulation of JAK-STAT and NF-kappaB signaling pathways. PLoS One 6(10):e27006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yin QQ, Liu CX, Wu YL, Wu SF, Wang Y, Zhang X, Hu XJ, Pu JX et al (2013) Preventive and therapeutic effects of adenanthin on experimental autoimmune encephalomyelitis by inhibiting NF-kappaB signaling. J Immunol 191(5):2115–2125

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Research Foundation (NRF) and Ministry of Health and Welfare funded by the Korean Government to JWC [NRF-2013R1A1A1A05005520 and NRF-2014M3A9B6069339] and HSJ [HI14C1135]. The authors thank Mr. Bhakta Prasad Gaire for technical assistance with histological analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Woong Choi.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflict of interest.

Additional information

Chi-Ho Lee, Se Jin Jeon, and Kyu Suk Cho contribute equally to this study.

Electronic Supplementary Material

ESM 1

(DOCX 1980 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, CH., Jeon, S.J., Cho, K.S. et al. Activation of Glucagon-Like Peptide-1 Receptor Promotes Neuroprotection in Experimental Autoimmune Encephalomyelitis by Reducing Neuroinflammatory Responses. Mol Neurobiol 55, 3007–3020 (2018). https://doi.org/10.1007/s12035-017-0550-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0550-2

Keywords

Navigation