Skip to main content
Log in

Developing an objective evaluating system to quantify the degree of upper limb movement impairment in patients with severe Friedreich’s ataxia

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Background

The use of standardized tools and objective measurements is essential to test the effectiveness of new drugs or rehabilitative protocols. Friedreich’s ataxia (FRDA) patients with severe disease are often unable to perform the quantitative measurement tests currently used.

Aim

The purpose of our study was to develop an easy-to-use application, for touchscreen devices, able to quantify the degree of upper limb movement impairment in patients with severe Friedreich’s ataxia. The APP, which we named “Twelve-Red-Squares App-Coo-Test” (12-RSACT), assesses the upper limb ataxia by measuring the test execution time.

Methods

All patients were clinically evaluated using the Composite Cerebellar Functional Severity (CCFS) and the Scale for the Assessment and Rating of Ataxia (SARA). We recruited 92 healthy subjects and 36 FRDA patients with a SARA mean value of 28.8.1 ± 8.2. All participants in our study underwent upper limb movement assessment using the new 12-RSACT, the Click Test, and a well-established system, i.e., the Nine-Hole Peg Test (9HPT).

Results

We observed a strong linear correlation between the measurements obtained with the 12-RSACT and those obtained with 9HPT, Click Test, CCFS, and SARA. The 12-RSACT was characterized by excellent internal consistency and intra-rater and test-retest reliability. The minimal detectable change (MDC%) was excellent too. Additionally, the 12-RSACT turned out to be faster and easier to perform compared with the 9HPT.

Conclusion

The 12-RSACT is an inexpensive test and is easy to use, which can be administered quickly. Therefore, 12-RSACT is a promising tool to assess the upper limb ataxia in FRDA patients and even those with severe diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Di Donato S, Gellera C, Mariotti C (2001) The complex clinical and genetic classification of inherited ataxias. II. Autosomal recessive ataxias. Neurol Sci 22(3):219–228

    Article  PubMed  Google Scholar 

  2. Embiruçu EK, Martyn ML, Schlesinger D, Kok F (2009) Autosomal recessive ataxias: 20 types and counting. Arq Neuropsiquiatr 67:1143–1156

    Article  PubMed  Google Scholar 

  3. Marcotulli C, Fortuni S, Arcuri G, Tomassini B, Leonardi L, Pierelli F, Testi R, Casali C (2016) GIFT-1, a phase IIa clinical trial to test the safety and efficacy of IFNγ administration in FRDA patients. Neurol Sci 37(3):361–364

    Article  PubMed  Google Scholar 

  4. Leonardi L, Aceto MG, Marcotulli C, Arcuria G, Serrao M, Pierelli F, Paone P, Filla A, Roca A, Casali C (2017) A wearable proprioceptive stabilizer for rehabilitation of limb and gait ataxia in hereditary cerebellar ataxias: a pilot open-labeled study. Neurol Sci 38(3):459–463

    Article  PubMed  Google Scholar 

  5. Pandolfo M, Pastore A (2009) The pathogenesis of Friedreich ataxia and the structure and function of frataxin. J Neurol 256:9–17

    Article  CAS  PubMed  Google Scholar 

  6. Delatycki MB, Paris DB, Gardner RJ, Nicholson GA, Nassif N, Storey E, MacMillan JC, Collins V, Williamson R, Forrest SM (1999) Clinical and genetic study of Friedreich ataxia in an Australian population. Am J Med Genet 87:168–174

    Article  CAS  PubMed  Google Scholar 

  7. Delatycki MB, Knight M, Koenig M, Cossee M, Williamson R, Forrest SM (1999) G130V, a common FRDA point mutation appears to have arisen from a common founder. Hum Genet 105:343–346

    Article  CAS  PubMed  Google Scholar 

  8. Cossée M, Dürr A, Schmitt M, Dahl N, Trouillas P, Allinson P et al (1999) Friedreich’s ataxia: point mutations and clinical presentation of compound heterozygotes. Ann Neurol 45(2):200–206

    Article  PubMed  Google Scholar 

  9. Pelliccia V, Ferranti S, Mostardini R, Grosso S (2019) A case of Friedreich ataxia in an adolescent with 16p11.2 microdeletion syndrome. Neurol Sci. https://doi.org/10.1007/s10072-019-04075-z

  10. Daiou C, Christodoulou K, Xiromerisiou G, Panas M, Dardiotis E, Kladi A, Speletas M, Ntaios G, Papadimitriou A, Germenis A, Hadjigeorgiou GM (2010) Absence of aprataxin gene mutations in a Greek cohort with sporadic early onset ataxia and normal GAA triplets in frataxin gene. Neurol Sci 31(3):393–397

    Article  CAS  PubMed  Google Scholar 

  11. Federico A (2004) Ataxia with isolated vitamin E deficiency: a treatable neurologic disorder resembling Friedreich’s ataxia. Neurol Sci 25(3):119–121

    Article  CAS  PubMed  Google Scholar 

  12. Campuzano V, Montermini L, Moltò MD, Pianese L, Cossée M, Cavalcanti F et al (1996) Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271(5254):1423–1427

    Article  CAS  PubMed  Google Scholar 

  13. Heidari MM, Houshmand M, Hosseinkhani S, Nafissi S, Scheiber-Mojdehkar B, Khatami M (2008) Association between trinucleotide CAG repeats of the DNA polymerase gene (POLG) with age of onset of Iranian Friedreich’s ataxia patients. Neurol Sci 29(6):489–493

    Article  PubMed  Google Scholar 

  14. Christodoulou K, Deymeer F, Serdaroğlu P, Özdemir C, Poda M, Georgiou DM et al (2001) Mapping of the second Friedreich’s ataxia (FRDA2) locus to chromosome 9p23-p11: evidence for further locus heterogeneity. Neurogenetics 3(3):127–132

    Article  CAS  PubMed  Google Scholar 

  15. Rajesh S et al (2002) The GAA triplet-repeat sequence in Friedreich ataxia shows a high level of somatic instability in vivo, with a significant predilection for large contractions. Hum Mol Genet 11(18):2175–2187

    Article  Google Scholar 

  16. Sharma R, De Biase I, Gomez M, Delatycki MB, Ashizawa T, Bidichandani SI (2004) Friedreich ataxia in carriers of unstable borderline GAA triplet-repeat alleles. Ann Neurol 56:898–901

    Article  CAS  PubMed  Google Scholar 

  17. Santos R, Lefevre S, Sliwa S, Seguin A, Camadro J, Lesuisse E (2010) Friedreich ataxia: molecular mechanisms, redox considerations, and therapeutic opportunities. Antioxid Redox Signal 13:651–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bulteau AL, Dancis A, Gareil M, Montagne JJ, Camadro JM, Lesuisse E (2007) Oxidative stress and protease dysfunction in the yeast model of Friedreich ataxia. Free Radic Biol Med 42:1561–1570

    Article  CAS  PubMed  Google Scholar 

  19. Clemm von Hohenberg C, Schocke MF, Wigand MC, Nachbauer W, Guttmann CR, Kubicki M, Shenton ME, Boesch S, Egger K (2013) Radial diffusivity in the cerebellar peduncles correlates with clinical severity in Friedreich ataxia. Neurol Sci 34(8):1459–1462

    Article  PubMed  Google Scholar 

  20. Parkinson MH, Boesch S, Nachbauer W, Mariotti C, Giunti P (2013) Clinical features of Friedreich’s ataxia: classical and atypical phenotypes. J Neurochem 126(1):103–117

    Article  CAS  PubMed  Google Scholar 

  21. Armani M, Zortea M, Pastorello E, Lombardi S, Tonello S, Zuliani L, Rigoni MT, Trevisan CP (2006) Friedreich’s ataxia: clinical heterogeneity in two sisters. Neurol Sci 27(2):140–142

    Article  CAS  PubMed  Google Scholar 

  22. Bürk K, Mälzig U, Wolf S, Heck S, Dimitriadis K, Schmitz-Hübsch T, Hering S, Lindig TM, Haug V, Timmann D, Degen I (2009) Comparison of three clinical rating scales in Friedreich ataxia (FRDA). Mov Disord 24(12):1779–1784

    Article  PubMed  Google Scholar 

  23. Bürk K, Schulz SR, Schulz JB (2013) Monitoring progression in Friedreich ataxia (FRDA): the use of clinical scales. J Neurochem 126(1):18–124

    Google Scholar 

  24. Schmitz-Hübsch T, du Montcel ST, Baliko L, Berciano J, Boesch S, Depondt C, Giunti P, Globas C, Infante J, Kang JS et al (2006) Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology 66:1717–1720

    Article  PubMed  Google Scholar 

  25. Saute JAM, Donis KC et al (2012) Ataxia rating scales-psychometric profiles, natural history and their application in clinical trials. Cerebellum 11(2):488–504

    Article  PubMed  Google Scholar 

  26. Schmitz-Hübsch T, Fimmers R, Rakowicz M, Rola R, Zdzienicka E, Fancellu R et al (2010) Responsiveness of different rating instruments in spinocerebellar ataxia patients. Neurology 74:678–684

    Article  PubMed  Google Scholar 

  27. Schmitz-Hübsch T, Giunti P, Stephenson DA, Globas C, Baliko L, Saccà F et al (2008) SCA Functional Index - usefulness of a compound performance measure in spinocerebellar ataxia patients. Neurology. 71:486–492

    Article  PubMed  Google Scholar 

  28. Du Montcel S, Charles P, Ribai P (2008) Composite cerebellar functional severity score: validation of a quantitative score of cerebellar impairment. Brain 131:1352–1361

    Article  PubMed  Google Scholar 

  29. Mathiowetz V, Weber K, Kashman N, Volland G (1985) Adult norms for the Nine Hole Peg Test of finger dexterity. Occup Ther J Res 5(1):24–38

    Article  Google Scholar 

  30. Oxford Grice K, Vogel KA, Le V, Mitchell A, Muniz S, Vollmer MA (2003) Adult norms for a commercially available Nine Hole Peg Test for finger dexterity. Am J Occup Ther 57(5):570–573

    Article  PubMed  Google Scholar 

  31. Saccà F et al (2016) Long-term effect of epoetin alfa on clinical and biochemical markers in Friedreich ataxia. Mov Disord 31:734–741

    Article  PubMed  CAS  Google Scholar 

  32. Patel M et al (2019) Open-label pilot study of oral methylprednisolone for the treatment of patients with Friedreich ataxia. Muscle Nerve 60(5):571–575

    Article  CAS  PubMed  Google Scholar 

  33. Pandolfo M et al (2014) Deferiprone in Friedreich ataxia: a 6-month randomized controlled trial. Ann Neurol 76:509–521

    Article  CAS  PubMed  Google Scholar 

  34. Corben LA et al (2010) A comparison of three measures of upper limb function in Friedreich ataxia. J Neurol 257:518–523

    Article  CAS  PubMed  Google Scholar 

  35. Tai G et al (2017) How does performance of the Friedreich Ataxia Functional Composite compare to rating scales? J Neurol 264:1768–1776

    Article  PubMed  Google Scholar 

  36. Arcuria G, Marcotulli C, Galasso C, Pierelli F, Casali C (2019) 15-White Dots APP-Coo-Test: a reliable touch-screen application for assessing upper limb movement impairment in patients with cerebellar ataxias. J Neurol 266(7):1611–1622

    Article  PubMed  Google Scholar 

  37. Solari A, Radice D, Manneschi L et al (2005) The multiple sclerosis functional composite: different practice effects in the three test components. J Neurol Sci 228:71–74

    Article  PubMed  Google Scholar 

  38. Serrao M, Pierelli F, Ranavolo A, Draicchio F, Conte C, Casali C et al (2012) Gait pattern in inherited cerebellar ataxias. Cerebellum 11(1):194–211

    Article  PubMed  Google Scholar 

  39. Portney LG, Watkins MP (2009) Foundations of clinical research: applications to practice, 3rd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  40. Harvill L (1991) Standard error of measurement. Educ Meas 10:33–41

    Article  Google Scholar 

  41. Donoghue D, Stokes EK (2009) How much change is true change? The minimum detectable change of the Berg Balance Scale in elderly people. J Rehabil Med 41:343–346

    Article  PubMed  Google Scholar 

  42. Haley SM, Fragala-Pinkham MA (2006) Interpreting change scores of tests and measures used in physical therapy. Phys Ther 86:735–743

    Article  PubMed  Google Scholar 

  43. Long A, Napierala JS, Polak U, Hauser L, Koeppen AH, Lynch DR et al (2017) Somatic instability of the expanded GAA repeats in Friedreich’s ataxia. PLoS One 12(12):e0189990

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. De Biase I, Rasmussen A, Endres D, Al-Mahdawi S, Monticelli A, Cocozza S (2007) Progressive GAA expansions in dorsal root ganglia of Friedreich’s ataxia patients. Ann Neurol 61:55–60

    Article  PubMed  CAS  Google Scholar 

  45. Filla A, De Michele G, Cavalcanti F, Pianese L, Monticelli A, Campanella G, Cocozza S (1996) The relationship between trinucleotide (GAA) repeat length and clinical features in Friedreich ataxia. Am J Hum Genet 59(3):554–560

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the patients and healthy subjects who participated in our study.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation was performed by Giuseppe Arcuria and Raffaele Amuso. Data collection and analysis were performed by Giuseppe Arcuria, Christian Marcotulli, and Claudio Galasso. Giuseppe Arcuria and Giuliano Dattilo did the statistical analyses. All authors contributed to interpretation of the results. The first draft of the manuscript was written by Giuseppe Arcuria and Giuliano Dattilo. Review and supervision were performed by Francesco Pierelli and Carlo Casali. All authors commented on previous versions of the manuscript and read and approved the final manuscript.

Corresponding author

Correspondence to Giuseppe Arcuria.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All the procedures performed in this study were in accordance with ethical standards laid down in 1964 Declaration of Helsinki and its later amendments or comparable ethical standards. All patients gave their written informed consent before study enrollment.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 341 kb)

ESM 2

(MP4 3309 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arcuria, G., Marcotulli, C., Amuso, R. et al. Developing an objective evaluating system to quantify the degree of upper limb movement impairment in patients with severe Friedreich’s ataxia. Neurol Sci 41, 1577–1587 (2020). https://doi.org/10.1007/s10072-020-04249-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-020-04249-0

Keywords

Navigation