Skip to main content
Log in

Association between trinucleotide CAG repeats of the DNA polymerase gene (POLG) with age of onset of Iranian Friedreich’s ataxia patients

  • Brief Communication
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Friedreich’s ataxia (FRDA), an autosomal recessive neurodegenerative disorder, is in most cases due to a homozygous intronic expansion resulting in the loss of function of frataxin. As mitochondrial DNA (mtDNA) copy number has been decreased in FRDA cells and mtDNA polymerase (POLG) is involved in the replication of mtDNA, we searched a trinucleotide CAG repeat length of this enzyme. The POLG CAG repeat length was determined in DNA samples extracted from 20 FRDA patients and 49 control subjects. Our findings showed that the distribution of the POLG CAG repeat length in the patients’ samples matched the distribution for control samples, but we found a statistically significant inverse correlation (r=−0.81) between the POLG CAG repeats and age of onset in FRDA patients. Our results suggest POLG CAG repeat instability would constitute a predisposing factor that, in combination with environmental risk factors, affect age of onset and disease progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grabczyk E, Usdin K (2000) The GAA*TTC triplet repeat expanded in Friedreich’s ataxia impedes transcription elongation by T7 RNA polymerase in a length and supercoil dependent manner. Nucleic Acids Res 28:2815–2822

    Article  PubMed  CAS  Google Scholar 

  2. Sakamoto N, Chastain PD, Parniewski P et al (1993) Sticky DNA: self-association properties of long GAA.TTC repeats in R.R.Y triplex structures from Friedreich’s ataxia. Mol Cell 3:465–475

    Article  Google Scholar 

  3. Campuzano V, Montermini L, Lutz Y et al (1997) Frataxin is reduced in Friedreich ataxia patients and is associated with mitochondrial membranes. Hum Mol Genet 6:1771–1780

    Article  PubMed  CAS  Google Scholar 

  4. Lodi R, Cooper JM, Bradley JL et al (1999) Deficit of in vivo mitochondrial ATP production in patients with Friedreich ataxia. Proc Natl Acad Sci USA 96:11492–11495

    Article  PubMed  CAS  Google Scholar 

  5. Miranda CJ, Santos MM, Ohshima K et al (2002) Frataxin knockin mouse. FEBS Lett 512:291–297

    Article  PubMed  CAS  Google Scholar 

  6. Cossee M, Puccio H, Gansmuller A et al (2000) Inactivation of the Friedreich ataxia mouse gene leads to early embryonic lethality without iron accumulation. Hum Mol Genet 9:1219–1226

    Article  PubMed  CAS  Google Scholar 

  7. Filla A, De Michele G, Cavalcanti F et al (1996) The relationship between trinucleotide (GAA) repeat length and clinical features in Friedreich ataxia. Am J Hum Genet 59:554–560

    PubMed  CAS  Google Scholar 

  8. De Michele G, Filla A, Criscuolo C et al (1998) Determinants of onset age in Friedreich’s ataxia. J Neurol 245:166–168

    Article  PubMed  Google Scholar 

  9. Karthikeyan G, Lewis LK, Resnick MA (2002) The mitochondrial protein frataxin prevents nuclear damage. Hum Mol Genet 11:1351–1362

    Article  PubMed  CAS  Google Scholar 

  10. Babcock M, de Silva D, Oaks R et al (1997) Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxin. Science 276:1709–1712

    Article  PubMed  CAS  Google Scholar 

  11. Foury F, Cazzalini O (1997) Deletion of the yeast homologue of the human gene associated with Friedreich’s ataxia elicits iron accumulation in mitochondria. FEBS Lett 411:373–377

    Article  PubMed  CAS  Google Scholar 

  12. Rotig A, de Lonlay P, Chretien D et al (1997) Aconitase and mitochondrial iron-sulphur protein deficiency in Friedreich ataxia. Nat Genet 17:215–217

    Article  PubMed  CAS  Google Scholar 

  13. Sanchez-Casis G, Cote M, Barbeau A (1976) Pathology of the heart in Friedreich’s ataxia: review of the literature and report of one case. Can J Neurol Sci 3:349–354

    PubMed  CAS  Google Scholar 

  14. Bradley J, Blake JC, Chamberlain S et al (2000) Clinical Biochemical and molecular genetic correlations in Friedreich’s ataxia. Hum Mol Genet 9:275–282

    Article  PubMed  CAS  Google Scholar 

  15. Van der Walt JM, Nicodemus KK et al (2003) Mitochondrial polymorphisms significantly reduce the risk of Parkinson disease. Am J Hum Genet 72:804–811

    Article  PubMed  Google Scholar 

  16. Bolden A, Noy GP, Weissbach A (1977) DNA polymerase of mitochondria is a gamma-polymerase. J Biol Chem 252:3351–3356

    PubMed  CAS  Google Scholar 

  17. Ropp PA, Copeland WC (1996) Cloning and characterization of the human mitochondrial DNA polymerase, DNA polymerase gamma. Genomics 36:449–458

    Article  PubMed  CAS  Google Scholar 

  18. Rovio AT, Marchington DR, Donat S et al (2001) Mutations at the mitochondrial DNA polymerase (POLG) locus associated with male infertility. Nature Genet 29:261–262

    Article  PubMed  CAS  Google Scholar 

  19. Harding AE (1981) Friedreich’s ataxia: a clinical and genetic study of 90 families with an analysis of early diagnostic criteria and intrafamilial clustering of clinical features. Brain 104:589–620

    Article  PubMed  CAS  Google Scholar 

  20. Geffroy G, Barbeau A, Breton G (1976) Clinical description and roentgenologic evaluation of patients with Friedreich’s ataxia. Can J Neurol Sci 3:279–286

    Google Scholar 

  21. Campuzano V, Monermini L, Molto MD (1996) Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271:1423–1427

    Article  PubMed  CAS  Google Scholar 

  22. Jensen M, Leffers H, Petersen JH et al (2004) Frequent polymorphism of the mitochondrial DNA polymerase gamma gene (POLG) in patients with normal spermiograms and unexplained subfertility. Hum Reprod 19:65–70

    Article  PubMed  Google Scholar 

  23. Cossi M, Schmitt M, Campuzano V (1997) Evolution of the Friedreich’s ataxia trinucleotide repeat expansions: founder effect and permutations. Proc Natl Acad Sci USA 94:7452–7457

    Article  Google Scholar 

  24. Houshmand M, Shariat Panahi SM, Nafisi S et al (2006) Identification and sizing of GAA trinucleotide repeat expansion, investigation for D-loop variations and mitochondrial deletions in Iranian patients with Friedreich’s ataxia. Mitochondrion 6:87–93

    Article  CAS  Google Scholar 

  25. Elpeleg O, Mandel H, Saada A (2002) Depletion of the other genome mitochondrial DNA depletion syndromes in humans. Mol Med 80:389–396

    Article  CAS  Google Scholar 

  26. Van Goethem G, Dermaut B, Lofgren A et al (2001) Mutation of POLG is associated with progressive external ophthalmoplegia characterized by mtDNA deletions. Nat Genet 28:211–212

    Article  PubMed  CAS  Google Scholar 

  27. Rovio AT, Tiranti V, Bednarz A et al (1999) Analysis of the trinucleotide CAG repeat from the human mitochondrial DNA polymerase gene in healthy and diseased individuals. Eur J Hum Genet 7:140–146

    Article  PubMed  CAS  Google Scholar 

  28. Giacchetti M, Monticelli A, De Biase I et al (2004) Mitochondrial DNA haplogroups influence the Friedreich’s ataxia phenotype. J Med Genet 41:293–295

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massoud Houshmand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heidari, M.M., Houshmand, M., Hosseinkhani, S. et al. Association between trinucleotide CAG repeats of the DNA polymerase gene (POLG) with age of onset of Iranian Friedreich’s ataxia patients. Neurol Sci 29, 489–493 (2008). https://doi.org/10.1007/s10072-008-1026-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-008-1026-y

Keywords

Navigation