Skip to main content
Log in

Immobilization of Fusarium graminearum β-d-fructofuranosidase using alternative cellulosic supports: Stabilization and production of fructooligosaccharides

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

The extracellular β-d-fructofuranosidase from Fusarium graminearum was immobilized using hydrophilic cotton, filter paper, multipurpose cloth, sugar cane bagasse, string, or gauze as alternative cellulosic supports, or with cyanogen bromide agarose. All derivatives (support+enzyme) showed high capacity for reuse (up to 23 times). The derivatives obtained with multipurpose cloth and string were stable at 60°C maintaining 80% of their activity for more than 120 min. The filter paper derivative had a halflife (T50) of 27 min at 70°C. When tested for their pH stability (3.0–9.0), all derivatives were more stable than the free enzyme, especially the cotton derivative. The sugarcane bagasse, string, and filter paper derivatives could efficiently produce fructooligosaccharides (FOS) using sucrose as substrate. According to the retention of enzymatic activity, reuse and stabilities, the filter paper and string were the best alternative supports for β-d-fructofuranosidase immobilization, allowing enzyme stabilization and production of FOS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Said S, Pietro R. Enzymes as Biotechnological Agents. Editora Legis Summa, São Paulo, Brazil. pp. 1–8 (2004)

    Google Scholar 

  2. Rubio MC, Runco R, Navarro AR. Invertase from a strain of Rhodotorula glutinis. Phytochemistry 61: 605–609 (2002)

    Article  CAS  Google Scholar 

  3. Guío F, Rodríguez MA, Alméciga-Diaz CJ, Sánchez OF. Recent trends in fructooligosaccharides production. Recent Pat. Food Nutr. Agric. 1: 221–230 (2009)

    Article  Google Scholar 

  4. Mussatto SI, Aguilar CN, Rodrigues LR, Teixeira JA. Fructooligosaccharides and β-fructofuranosidase production by Aspergillus japonicus immobilized on lignocellulosic materials. J. Mol. Catal. B-Enzym. 59: 76–81 (2009)

    Article  CAS  Google Scholar 

  5. Ganaie MA, Dehariya K, Gupta US. Optimization of process parameters of biocatalyst for transformation of sucrose to fructooligosaccharides. Indo Am. J. Pharm. Res. 3: 4138–4148 (2013)

    Google Scholar 

  6. Charalampopoulos D, Rastall RA. Prebiotics in foods. Curr. Opin. Biotech. 23: 187–191 (2012)

    Article  CAS  Google Scholar 

  7. Tran DN, Balkus Jr KJ. Perspective of recent progress in immobilization of enzymes. ACS Catal. 1: 956–968 (2011)

    Article  CAS  Google Scholar 

  8. Klibanov AM. Enzymes: Nature’s chemical machines. Technol. Rev. 86: 40–48 (1983)

    Google Scholar 

  9. Sulabha K, Asmita P. Gellan gum a novel polysaccharide matrix for immobilization of thermo-tolerant yeast cells with invertase activity: Factorial design and rheological studies. Res. J. Biotechnol. 7: 81–87 (2012)

    Google Scholar 

  10. Godbole SS, Kubal BS, D’Souza SF. Hydrolysis of concentrated sucrose syrups by invertase immobilized on anion exchanger waste cotton thread. Enzyme Microb. Tech. 12: 214–217 (1990)

    Article  CAS  Google Scholar 

  11. D’Souza SF, Melo JS, Deshpande A, Nadkarni GB. Immobilization of yeast cells by adhesion to glass surface using polyethylenimine. Biotechnol. Lett. 8: 643–648 (1986)

    Article  Google Scholar 

  12. Yamazaki H, Cheok RKH, Fraser ADE. Immobilization of invertase on polyethylenimine coated cotton cloth. Biotechnol. Lett. 6: 165–170 (1984)

    Article  CAS  Google Scholar 

  13. Tanriseven A, Dogan S. Immoblization of invertase within calcium alginate gel capsules. Process Biochem. 36: 1081–1083 (2001)

    Article  CAS  Google Scholar 

  14. Heichal-Segal O, Rapport S, Braun S. Immobilization in alginatesilicate sol-gel matrix protects β-glucosidase against thermal and chemical denaturation. Nat. Biotechnol. 13: 798–800 (1995)

    Article  CAS  Google Scholar 

  15. Vallejo-Becerra V, Vásquez-Bahena MJ, Santiago-Hernández JA, Hidalgo-Lara ME. Immobilization of the recombinant invertase INVB from Zymomonas mobilis on Nylon-6. J. Ind. Microbiol. Biot. 35: 1289–1295 (2008)

    Article  CAS  Google Scholar 

  16. Uzun K, Çevik E, Senel M, Baykal A. Reversible immobilization of invertase on Cu-chelated polyvinylimidazole-grafted iron oxide nanoparticles. Bioproc. Biosyst. Eng. 36: 1807–1816 (2013)

    Article  CAS  Google Scholar 

  17. Lorenzoni ASG, Aydos LF, Klein MP, Rodrigues RC, Hertz PF. Fructooligosaccharides synthesis by highly stable immobilized β-fructofuranosidase from Aspergillus aculeatus. Carbohyd. Polym. 103: 193–197 (2014)

    Article  CAS  Google Scholar 

  18. Kurakake M, Masumoto R, Maguma K, Kamata A, Saito E, Ukita N, Komaki T. Production of fructooligosaccharides by β-fructofuranosidases from Aspergillus oryzae KB. J. Agr. Food Chem. 58: 488–492 (2010)

    Article  CAS  Google Scholar 

  19. Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426–428 (1959)

    Article  CAS  Google Scholar 

  20. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193: 265–275 (1951)

    CAS  Google Scholar 

  21. Sankaran K, Godbole SS, D’Souza SF. Preparation of spray-dried, sugar free egg powder using glucose oxidase and catalase coimmobilized on cotton cloth. Enzyme Microb. Tech. 11: 617–619 (1989)

    Article  CAS  Google Scholar 

  22. Poças EC, Buzato JB, Celligoi MAPC, Neto DC. Application of loofa sponge (Luffa cylindrica) as carrier for invertase immobilization for invert sugar syrup production. Semin-Exact Technol. Sci. 25: 53–58 (2004)

    Article  Google Scholar 

  23. D’Souza SF, Godbole SS. Imobilization of invertase on rice husk using polyethylemine. J. Biochem. Bioph. Meth. 52: 59–62 (2002)

    Article  Google Scholar 

  24. Awad GE, Amer H, El-Gammal EW, Helmy WA, Esawy MA, Elnashar MM. Production optimization of invertase by Lactobacillus brevis Mm-6 and its immobilization on alginate beads. Carbohyd. Polym. 93: 740–746 (2013)

    Article  CAS  Google Scholar 

  25. Uygun M, Uygun DA, Özçaliskan E, Akgöl S, Denizli A. Concanavalin A immobilized poly (ethylene glycol dimethacrylate) based affinity cryogel matrix and usability of invertase immobilization. J. Chromatogr. B 887–888: 73–78 (2012)

    Google Scholar 

  26. Imai K, Shiomi T, Sato K, Fujishima A. Preparation of immobilized invertase using poly(viny1 Alcohol) membrane. Biotechnol. Bioeng. 25: 613–617 (1983)

    Article  CAS  Google Scholar 

  27. Mahmoud DAR. Immobilization of invertase by a new economical method using wood sawdust waste. Aust. J. Basic Appl. Sci. 1: 364–372 (2007)

    CAS  Google Scholar 

  28. Gonçalves HB, Jorge JA, Pessela BC, Lorente GF, Guisán JM, Guimarães LHS. Characterization of a tannase from Emericela nidulans immobilized on ionic and covalent supports for propyl gallate synthesis. Biotechnol. Lett. 35: 591–598 (2013)

    Article  Google Scholar 

  29. Álvaro-Benito M, de Abreu M, Fernández-Arrojo L, Plou FJ, Jiménez-Barbero J, Ballesteros A, Polaina J, Fernandez-Lobato M. Characterization of a β-fructofuranosidase from Schwanniomyces occidentalis with transfructosylating activity yielding the prebiotic 6-kestose. J. Biotechnol. 132: 75–81 (2007)

    Article  Google Scholar 

  30. Katapodis P, Christakopoulos P. Induction and partial characterization of intracellular β-fructofuranosidase from Thermoascus aurantiacus and its application in the synthesis of 6-kestose. World J. Microb. Biot. 20: 667–672 (2004)

    Article  CAS  Google Scholar 

  31. Farine S, Verluis C, Bonnici PJ, Heck A, L’Homme C, Puigsever A, Biagini A. Application of a high performance anion exchange chromatography to study invertase-catalised hydrolysis of sucrose and formation of intermedited fructan products. Appl. Microbiol. Biot. 55: 55–60 (2001)

    Article  CAS  Google Scholar 

  32. Aziani G, Terenzi HF, Jorge JA, Guimarães LHS. Production of fructooligosaccharides by Aspergillus phoenicis biofilm on polyethylene as inert support. Food Technol. Biotech. 50: 40–45 (2012)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Henrique Souza Guimarães.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonçalves, H.B., Jorge, J.A. & Guimarães, L.H.S. Immobilization of Fusarium graminearum β-d-fructofuranosidase using alternative cellulosic supports: Stabilization and production of fructooligosaccharides. Food Sci Biotechnol 24, 1429–1435 (2015). https://doi.org/10.1007/s10068-015-0183-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-015-0183-z

Keywords

Navigation