Skip to main content
Log in

Reversible immobilization of invertase on Cu-chelated polyvinylimidazole-grafted iron oxide nanoparticles

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Polyvinylimidazole (PVI)-grafted iron oxide nanoparticles (PVIgMNP) were prepared by grafting of telomere of PVI on the iron oxide nanoparticles. Different metal ions (Cu2+, Zn2+, Cr2+, Ni2+) ions were chelated on polyvinylimidazole-grafted iron oxide nanoparticles, and then the metal-chelated magnetic particles were used in the adsorption of invertase. The maximum invertase immobilization capacity of the PVIgMNP–Cu2+ beads was observed to be 142.856 mg/g (invertase/PVIgMNP) at pH 5.0. The values of the maximum reaction rate (V max) and Michaelis–Menten constant (Km) were determined for the free and immobilized enzymes. The enzyme adsorption–desorption studies, pH effect on the adsorption efficiency, affinity of different metal ions, the kinetic parameters and storage stability of free and immobilized enzymes were evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Girelli AM, Mattei E (2005) Application of immobilized enzyme reactor in on-line high performance liquid chromatography. J Chromatogr B 819:3–16

    Google Scholar 

  2. Krajewska B (2004) Application of chitin- and chitosan-based materials for enzyme immobilizations: a review. Enzyme Microb Technol 35:126–139

    Article  CAS  Google Scholar 

  3. Arica MY, Soydogan H, Bayramoglu G (2010) Reversible immobilization of Candida rugosa lipase on fibrous polymer grafted and sulfonated p(HEMA/EGDMA) beads. Bioprocess Biosyst Eng 33:227–236

    Article  Google Scholar 

  4. Coulet PR, Carlsso J, Porath J (1981) Immobilization of enzymes on metal-chelate regenerable carriers. Biotechnol Bioeng 23:663–668

    Article  CAS  Google Scholar 

  5. Carlsson J, Axen R, Unge T (1975) Reversible covalent immobilization of enzymes by thiol-disulphide interchange. Eur J Biochem 59:567–572

    Article  CAS  Google Scholar 

  6. Bayramoglu G, Altıntas B, Arica MY (2011) Reversible immobilization of uricase on conductive polyaniline brushes grafted on polyacrylonitrile film. Bioprocess Biosyst Eng 34:127–134

    Article  CAS  Google Scholar 

  7. Gates B, Xia Y (2001) Photonic band gap properties of opaline lattices of spherical colloids doped with various concentrations of smaller colloids. Appl Phys Lett 78:3178–3180

    Article  CAS  Google Scholar 

  8. Shimomura M, Sawadaishi T (2001) Bottom-up strategy of materials fabrication: a new trend in nanotechnology of soft materials. Curr Opin Coll Interf Sci 6:11–16

    Article  CAS  Google Scholar 

  9. Huang SH, Liao MH, Chen DH (2003) Direct binding and characterization of lipase onto magnetic nanoparticles. Biotechnol Prog 19:1095–1100

    Article  CAS  Google Scholar 

  10. Berry C, Curtis ASG (2003) Functionalization of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 36:198–206

    Article  Google Scholar 

  11. Pankhurst QA, Connolly J, Jones SK, Dodson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36:167–181

    Article  Google Scholar 

  12. Luo L, Li Q, Xu Y, Ding Y, Wang X, Deng D, Xu Y (2010) Amperometric glucose biosensor based on NiFe2O4 nanoparticles and chitosan. Sens Actuat B Chem 145:293–298

    Article  CAS  Google Scholar 

  13. Kaushik A, Solanki PR, Ansari AA, Sumana G, Ahmad S (2009) Iron oxide-chitosan nanobiocomposite for urea sensor. Sens Actuat B Chem 138:572–580

    Article  CAS  Google Scholar 

  14. Qu S, Wang J, Kong JL, Yang PY, Chen G (2007) Magnetic loading of carbon nanotube/nano-Fe3O4 composite for electrochemical sensing. Talanta 71:1096–1102

    Article  CAS  Google Scholar 

  15. Jordan J, Kumar CSSR, Theegala C (2011) Preparation and characterization of cellulase-bound magnetite nanopartiecles. J Mol Catal B Enzym 68:139–146

    Article  CAS  Google Scholar 

  16. Xie W, Ma N (2010) Enzymatic transesterification of soybean oil by using immobilized lipase on magnetic nano-particles. Biomass Bioenergy 34:890–896

    Article  CAS  Google Scholar 

  17. Wang H, Huang J, Wang C, Li D, Ding L, Han Y (2011) Immobilization of glucose oxidase using CoFe2O4/SiO2 nanoparticles as carrier. Appl Surf Sci 257:5739–5745

    Article  CAS  Google Scholar 

  18. Namdeo M, Bajpai SK (2009) Immobilization of α-amylase onto cellulose-coated magnetite (CCM) nanoparticles and preliminary starch degradation study. J Mol Catal B Enzym 59:134–139

    Article  CAS  Google Scholar 

  19. Melo JS, D’Souza SF (2000) A simple approach for the simultaneous isolation and immobilization of Invertase using crude extracts of yeast and Jack bean meal. J Biochem Biophys Method 42:133–135

    Article  CAS  Google Scholar 

  20. Tanioka A, Yokoyama Y, Miyasaka K (1998) Preparation and properties of enzyme-immobilized porous polypropylene films. J Coll Interf Sci 200:185–187

    Article  CAS  Google Scholar 

  21. Rao MA, Violante A (1991) Invertase β-fructosidase): effects of montmorillonite, AL-hydroxide and AL(OH)x-montmorillonite complex on activity and kinetic properties. Soil Biol Biochem 23:581–587

    Article  Google Scholar 

  22. Vujčić Z, Miloradović Z, Milovanović A, Božić N (2011) Cell wall invertase immobilisation within gelatin gel. Food Chem 126:236–240

    Article  Google Scholar 

  23. Yildiz HB, Kamaci M, Azak H, Secgin O, Suer O (2013) A comparative study: immobilization of yeast cells and invertase in poly(ethyleneoxide) electrodes. J Mol Catal B Enzym 91:52–58

    Article  CAS  Google Scholar 

  24. Uzun K, Cevik E, Şenel M, Sözeri H, Baykal A, Abasıyanık MF, Toprak MS (2010) Covalent immobilization of invertase on PAMAMdendrimer modified superparamagnetic iron oxide nanoparticles. J Nanopart Res 12:3057–3067

    Article  CAS  Google Scholar 

  25. Takafuji M, Ide S, Ihara H, Xu Z (2004) Preparation of poly(1-vinylimidazole)-grafted magnetic nanoparticles and their application for removal of metal ions. Chem Mater 16:1977–1983

    Article  CAS  Google Scholar 

  26. Nelson N (1944) A photometric adaptation of the Somogyi method for the determination of glucose. J Biol Chem 153:375–380

    CAS  Google Scholar 

  27. Lowry O, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  28. Wejrzanowski T, Pielaszek R, Opalińska A, Matysiak H, Lojkowski W, Kurzydlowski KJ (2006) Quantitative methods for nanopowders characterization. Appl Surf Sci 253:204–208

    Article  CAS  Google Scholar 

  29. Pielaszek P (2003) Applied crystallography proceedings of the xix conference, vol 43. Krakow Poland

  30. Karaoğlu E, Deligöz H, Sözeri H, Baykal A, Toprak MS (2011) Hydrothermal synthesis and characterization of PEG-Mn3O4 nanocomposite. Nano Micro Lett 3:25–33

    Google Scholar 

  31. Karaoğlu E, Kavas H, Baykal A, Toprak MS, Sözeri H (2011) Effect of hydrolyzing agents on the properties of poly (Ethylene Glycol)-Fe3O4 nanocomposite. Nano Micro Lett 3:79–85

    Google Scholar 

  32. Durmus Z, Kavas H, Baykal A, Sozeri H, Alpsoy L, Çelik SÜ, Toprak MS (2011) Synthesis and characterization of L-carnosine coated iron oxide nanoparticles. J Alloy Comp 509:2555–2561

    Article  CAS  Google Scholar 

  33. Kök S, Osman B, Kara A, Beşirli N (2011) Vinyl triazole carrying metal-chelated beads for the reversible immobilization of glucoamylase. J Appl Polym Sci 120:2563–2570

    Article  Google Scholar 

  34. Rosa AH, Vicente AA, Rocha JC, Trevisan HC (2000) A new application of humic substances: activation of supports for invertase immobilization. J Anal Chem 368:730–733

    Article  CAS  Google Scholar 

  35. Sarı M, Akgol S, Karataş M, Denizli A (2006) Reversible immobilization of catalase by metal chelate affinity interaction on magnetic beads. Indust Eng Chem Res 45:3036–3043

    Article  Google Scholar 

  36. Sahmetlioglu E, Yürük H, Toppare L, Cianga I, Yagci Y (2006) Immobilization of invertase and glucose oxidase in conducting copolymers of thiophene functionalized poly(vinyl alcohol) with pyrrole. React Funct Polym 66:365–371

    Article  CAS  Google Scholar 

  37. Isık S, Alkan S, Toppare L, Cianga I, Yagcı Y (2003) Immobilization of invertase and glucose oxidase in poly 2-methylbutyl-2-(3-thienyl) acetate/polypyrrole matrices. Europ Polym J 39:2375–2381

    Article  Google Scholar 

  38. Torres R, Mateo C, Fuentes M, Palomo J, Ortiz C, Fernandez-Lafuente R, Guisan J (2002) Reversible immobilization of invertase on sepabeads coated with polyethyleneimine: optimization of the biocatalyst’s stability. Biotechnol Prog 18:1221–1226

    Article  CAS  Google Scholar 

  39. Grigoriy S, Chaga J (2001) Twenty-five years of immobilized metal ion affinity chromatography: past, present and future. J Biochem Biophys Methods 49:313–334

    Article  Google Scholar 

  40. Akgöl S, Denizli A (2004) Novel metal-chelate affinity sorbents for reversible use in catalase adsorption. J Molecul Catal B Enzym 28:7–14

    Article  Google Scholar 

  41. Wu J, Luan M, Zhao J (2006) Trypsin immobilization by direct adsorption on metal ion chelated macroporous chitosan-silica gel beads. Int J Biol Macromol 39:185–191

    Article  CAS  Google Scholar 

  42. Bahar T, Tuncel A (2002) Immobilization of invertase onto crosslinked poly(p-chloromethylstyrene) beads. J Appl Polym Sci 83:1268–1279

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Şenel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uzun, K., Çevik, E., Şenel, M. et al. Reversible immobilization of invertase on Cu-chelated polyvinylimidazole-grafted iron oxide nanoparticles. Bioprocess Biosyst Eng 36, 1807–1816 (2013). https://doi.org/10.1007/s00449-013-0955-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-013-0955-x

Keywords

Navigation