Skip to main content

Advertisement

Log in

Using geophysical data to assess groundwater levels and the accuracy of a regional numerical flow model

Utilisation de données géophysiques pour évaluer les niveaux piézométriques et la précision d’un modèle numérique d’écoulements régionaux

Utilización de datos geofísicos para evaluar niveles de aguas subterráneas y la precisión de un modelo numérico de flujo regional

使用地球物理数据评估地下水位和区域数值模型的准确性

Uso de dados geofísicos para avaliar os níveis das águas subterrâneas e a acurácia de um modelo numérico de fluxo regional

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The use of geophysical data to accurately determine water levels is demonstrated for an aquifer within the Saint-Narcisse moraine in the Mauricie region of southeastern Québec, Canada. Two numerical simulations were conducted using FEFLOW, one based on regional piezometric data and the other using geophysical data; the data were acquired through transient electromagnetic (TEM), electrical resistivity (ERT), and ground-penetrating radar (GPR) surveys. The three-dimensional geological and groundwater flow model was based on data from 94 boreholes, 5 stratigraphic cross-sections, and 20 TEM, 6 ERT (~1.44 km) and 4 GPR (~0.97 km) surveys. Both numerical analyses confirmed the simulated water levels, and the root mean square errors obtained from the piezometric data and the multiple geophysical techniques were similar at 3.81 and 2.76 m, respectively. Through a discrete modeling approach, this study shows that groundwater levels estimated using geophysical tools and methods and those determined by direct observation are comparable. The outcome illustrates how geophysical data can complement direct observations to provide additional hydraulic information to hydrologic modellers. Geophysical surveys provide an extensive set of soft data that can be leveraged to improve groundwater flow models and determine groundwater levels, particularly in areas characterized by limited direct piezometric information.

Résumé

L’utilisation de données géophysiques pour déterminer avec précision les niveaux d’eau est démontrée pour un aquifère situé dans la moraine de Saint-Narcisse dans la région de la Mauricie au sud-est du Québec, Canada. Deux simulations numériques ont été effectuées à l’aide de FEFLOW, l’une basée sur des données piézométriques régionales et l’autre sur des données géophysiques; les données ont été acquises par des levés électromagnétiques transitoires (TEM), de résistivité électrique (ERT) et de radar à pénétration de sol (GPR). Le modèle tridimensionnel géologique et d’écoulement des eaux souterraines était basé sur les données de 94 forages, 5 coupes stratigraphiques, et 20 levés TEM, 6 ERT (~1.44 km) et 4 GPR (~0.97 km). Les deux analyses numériques ont confirmé les niveaux d’eau simulés, et les erreurs quadratiques moyennes obtenues à partir des données piézométriques et des différentes techniques géophysiques étaient similaires, soit 3.81 et 2.76 m, respectivement. Grâce à une approche de modélisation discrète, cette étude montre que les niveaux des eaux souterraines estimés à l’aide d’outils et de méthodes géophysiques et ceux déterminés par observation directe sont comparables. Le résultat illustre comment les données géophysiques peuvent compléter les observations directes pour fournir des informations hydrauliques supplémentaires aux modélisateurs hydrologiques. Les levés géophysiques fournissent un vaste ensemble de données qui peuvent être exploitées pour améliorer les modèles d’écoulement des eaux souterraines et déterminer les niveaux des eaux souterraines, en particulier dans les zones caractérisées par des informations piézométriques directes limitées.

Resumen

Se demuestra el uso de datos geofísicos para determinar con precisión los niveles de agua en un acuífero dentro de la morrena de Saint-Narcisse, en la región de Mauricie, al sureste de Quebec, Canadá. Se realizaron dos simulaciones numéricas con FEFLOW, una basada en datos piezométricos regionales y la otra en datos geofísicos; los datos se adquirieron mediante estudios electromagnéticos transitorios (TEM), de resistividad eléctrica (ERT) y de radar de penetración en el suelo (GPR). El modelo tridimensional geológico y de flujo de aguas subterráneas se basó en los datos de 94 pozos de sondeo, 5 secciones transversales estratigráficas y 20 estudios TEM, 6 ERT (~1.44 km) y 4 GPR (~0.97 km). Ambos análisis numéricos confirmaron los niveles de agua simulados, y los errores cuadráticos medios obtenidos a partir de los datos piezométricos y de las múltiples técnicas geofísicas fueron similares: 3.81 y 2.76 m, respectivamente. Mediante un enfoque de modelización discreta, este estudio muestra que los niveles de agua subterránea estimados mediante herramientas y métodos geofísicos y los determinados por observación directa son comparables. El resultado ilustra cómo los datos geofísicos pueden complementar las observaciones directas para proporcionar información hidráulica adicional a los modeladores hidrológicos. Los estudios geofísicos proporcionan un amplio conjunto de datos blandos que pueden aprovecharse para mejorar los modelos de flujo de agua subterránea y determinar los niveles de agua subterránea, particularmente en áreas caracterizadas por una limitada información piezométrica directa.

摘要

在加拿大魁北克省东南的Mauricie地区的Saint-Narcisse Moraine内的含水层证明了地球物理数据准确确定地下水位。使用FEFLOW进行了两次数值模拟,一个基于区域压力数据,另一个基于地球物理数据。数据是通过瞬态电磁(TEM),电阻率(ERT)和地面穿透雷达(GPR)调查获取的。三维地质和地下水流量模型基于94个钻孔,5个地层剖面以及20个TEM,6 ERT(~1.44 km)和4 GPR(~0.97 km)调查的数据。 两项数值分析都证实了模拟的水位,并且从压力数据中获得的平方根误差和多种地球物理技术分别在3.81 和2.76 m时。 通过离散的建模方法,本研究表明,使用地球物理工具和方法估计的地下水位以及通过直接观察确定的方法是可比的。结果说明了地球物理数据如何补充直接观察,以及为水文模块提供其他水力信息。地球物理调查提供了一组广泛的软数据,可以利用这些软数据来改善地下水流模型并确定地下水位,尤其是在有限的直接压力信息的研究区。

Resumo

O uso de dados geofísicos para determinar os níveis da água com acurácia é demonstrado para um aquífero dentro da morena de Saint-Narcisse, na região de Mauricie, no sudeste de Québec, Canadá. Duas simulações numéricas foram realizadas usando FEFLOW, uma baseada em dados piezométricos regionais e outra usando dados geofísicos; os dados foram adquiridos por meio de levantamentos eletromagnéticos transiente (EMT), eletrorresistividade (ER) e radar de penetração no solo (RPS). O modelo tridimensional geológico e de fluxo de águas subterrâneas foi baseado em dados de 94 furos, 5 seções transversais estratigráficas e 20 levantamentos EMT, 6 ERT (~1.44 km) e 4 RPS (~0.97 km). Ambas as análises numéricas confirmaram a simulação dos níveis de água, a partir dos quais, também foram obtidos erros quadráticos médios tanto dos dados piezométricos quanto das técnicas geofísicas aplicadas, de 3.81 e 2.76 m, respectivamente. Através de uma abordagem de modelagem discreta, este estudo mostra que os níveis de água subterrânea estimados usando métodos geofísicos e aqueles determinados por observação direta são próximos. O resultado ilustra como os dados geofísicos podem complementar as observações diretas para fornecer informações hidráulicas adicionais aos modeladores hidrológicos. Os levantamentos geofísicos proporcionam uma ampla varredura de dados que podem ser aproveitados para melhorar os modelos de fluxo das águas subterrâneas e determinar os níveis das águas subterrâneas, principalmente em áreas com limitadas informações de observações diretas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abu-Hassanein ZS, Benson CH, Blotz LR (1996) Electrical resistivity of compacted clays. J Geotech Eng 122:397–406. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:5(397)

    Article  Google Scholar 

  • Allen DM, Schuurman N, Deshpande A, Scibek J (2008) Data integration and standardization in cross-border hydrogeological studies: a novel approach to hydrostratigraphic model development. Environ Geol 53:1441–1453. https://doi.org/10.1007/s00254-007-0753-3

    Article  Google Scholar 

  • Asprion U, Aigner T (1997) Aquifer architecture analysis using ground-penetrating radar: Triassic and Quaternary examples (S. Germany). Environ Geol 31:66–75

    Article  Google Scholar 

  • Baines D, Smith DG, Froese DG, Bauman P, Nimeck G (2002) Electrical resistivity ground imaging (ERGI): a new tool for mapping the lithology and geometry of channel-belts and valley-fills. Sedimentology 49:441–449

    Article  Google Scholar 

  • Baker PL (1991) Response of ground-penetrating radar to bounding surfaces and lithofacies variations in sand barrier sequences. Explor Geophys 22:19–22. https://doi.org/10.1071/EG991019

    Article  Google Scholar 

  • Benn D, Evans DJA (2010) Glaciers and glaciation, 1st edn. Routledge, London

    Google Scholar 

  • Benzaazoua M, Fall M, Belem T (2004) A contribution to understanding the hardening process of cemented pastefill. Miner Eng 17:141–152. https://doi.org/10.1016/j.mineng.2003.10.022

    Article  Google Scholar 

  • Beres M Jr, Haeni FP (1991) Application of ground-penetrating-radar methods in hydrogeologic studies. Groundwater 29:375–386. https://doi.org/10.1111/j.1745-6584.1991.tb00528.x

    Article  Google Scholar 

  • Bersezio R, Giudici M, Mele M (2007) Combining sedimentological and geophysical data for high-resolution 3-D mapping of fluvial architectural elements in the Quaternary Po plain (Italy). Sediment Geol 202:230–248

    Article  Google Scholar 

  • Binley A, Beven K (2003) Vadose zone flow model uncertainty as conditioned on geophysical data. Groundwater 41:119–127

    Article  Google Scholar 

  • Binley A, Cassiani G, Deiana R (2010) Hydrogeophysics: opportunities and challenges. Boll Geofis Teor Appl 51(4):267–284

  • Boumaiza L, Chesnaux R, Walter J, Stumpp C (2020) Assessing groundwater recharge and transpiration in a humid northern region dominated by snowmelt using vadose-zone depth profiles. Hydrogeol J 28:2315–2329. https://doi.org/10.1111/gwat.13056

    Article  Google Scholar 

  • Boumaiza L, Chesnaux R, Walter J, Stumpp C (2021) Constraining a flow model with field measurements to assess water transit time through a vadose zone. Groundwater 59:417–427. https://doi.org/10.1111/gwat.13056

    Article  Google Scholar 

  • Boumaiza L, Walter J, Chesnaux R, Lambert M, Wanke H, Brookfield A, Batelaan O, Galvão P, Laftouhi N (2022) Groundwater recharge over the past 100 years: regional spatiotemporal assessment and climate change impact over the Saguenay-Lac-Saint-Jean region, Canada. Hydrol Process e14526. https://doi.org/10.1002/hyp.14526

  • Bowling JC, Rodriguez AB, Harry DL, Zheng C (2005) Delineating alluvial aquifer heterogeneity using resistivity and GPR data. Groundwater 43:890–903

    Google Scholar 

  • Bowling JC, Harry DL, Rodriguez AB, Zheng C (2007) Integrated geophysical and geological investigation of a heterogeneous fluvial aquifer in Columbus Mississippi. J Appl Geophys 62:58–73

    Article  Google Scholar 

  • Bristow CS, Jol HM (2003) An introduction to ground penetrating radar (GPR) in sediments. Geol Soc London Spec Publ 211:1–7

    Article  Google Scholar 

  • Busch S, Weihermüller L, Huisman JA, Steelman CM, Endres AL, Vereecken H, Van Der Kruk J (2013) Coupled hydrogeophysical inversion of time-lapse surface GPR data to estimate hydraulic properties of a layered subsurface. Water Resour Res 49:8480–8494

    Article  Google Scholar 

  • Calvache ML, Ibáñez S, Duque C, Martín-Rosales W, López-Chican M, Rubio JC, González A, Viseras C (2009) Numerical modelling of the potential effects of a dam on a coastal aquifer in S Spain. Hydrol Process 23:1268–1281. https://doi.org/10.1002/hyp.7234

    Article  Google Scholar 

  • Chesnaux R (2013) Regional recharge assessment in the crystalline bedrock aquifer of the Kenogami Uplands, Canada. Hydrol Sci J 58:421–436. https://doi.org/10.1080/02626667.2012.754100

    Article  Google Scholar 

  • Chesnaux R, Lambert M, Walter J, Dugrain V, Rouleau A, Daigneault R (2011) Building a geodatabase for mapping hydrogeological features and 3D modeling of groundwater systems: application to the Saguenay–Lac-St.-Jean region. Canada Comput Geosci 37:1870–1882. https://doi.org/10.1016/j.cageo.2011.04.013

    Article  Google Scholar 

  • Chesnaux R, Dal Soglio L, Wendling G (2013) Modelling the impacts of shale gas extraction on groundwater and surface water resources. In: Proceedings of GeoMontreal 2013, Montreal, May, 2013

  • Chesnaux R, Lambert M, Walter J, Fillastre U, Hay M, Rouleau A, Daigneault R, Moisan A, Germaneau D (2017) A simplified geographical information systems (GIS)-based methodology for modeling the topography of bedrock: illustration using the Canadian Shield. Appl Geomatics 9:61–78. https://doi.org/10.1007/s12518-017-0183-1

    Article  Google Scholar 

  • Claes N, Paige GB, Grana D, Parsekian AD (2020) Parameterization of a hydrologic model with geophysical data to simulate observed subsurface return flow paths. Vadose Zone J 19:e20024. https://doi.org/10.1002/vzj2.20024

    Article  Google Scholar 

  • Cloutier V, Blanchette D, Dallaire P-L, Nadeau S, Rosa E, Roy M (2013) Abitibi- Témiscamingue groundwater knowledge acquisition project (part 1). Final Report submitted to the Ministry of Sustainable Development, Environment, Parks Wildlife as part of the Quebec Groundwater Knowledge Acquisition Program. Rapp Rech P1

  • Cojan I, Renard M (2013) Sédimentologie [Sedimentology], 3rd edn. Dunod, Paris

    Google Scholar 

  • Constable SC, Parker RL (1987) Occam’s inversion: a practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics 52:289–300. https://doi.org/10.1190/1.1442303

    Article  Google Scholar 

  • Costabel S, Siemon B, Houben G, Günther T (2017) Geophysical investigation of a freshwater lens on the island of Langeoog, Germany: insights from combined HEM, TEM and MRS data. J Appl Geophys 136:231–245

    Article  Google Scholar 

  • Cui T, Sreekanth J, Pickett T, Rassam D, Gilfedder M, Barrett D (2021) Impact of model parameterization on predictive uncertainty of regional groundwater models in the context of environmental impact assessment. Environ Impact Assess Rev 90:106620. https://doi.org/10.1016/j.eiar.2021.106620

    Article  Google Scholar 

  • Daigneault R-A, Occhietti S (2006) Les moraines du massif Algonquin, Ontario, au début du Dryas récent, et corrélation avec la Moraine de Saint-Narcisse [Moraines of the Algonquin Massif, Ontario, at the beginning of the Younger Dryas, and correlation with the Moraine of Saint-Narcisse]. Géogr Phys Quat 60:103–118. https://doi.org/10.7202/016823ar

    Article  Google Scholar 

  • Davis JL, Annan AP (1989) Ground-penetrating radar for high-resolution mapping of soil and rock stratigraphy 1. Geophys Prospect 37:531–551. https://doi.org/10.1111/j.1365-2478.1989.tb02221.x

    Article  Google Scholar 

  • Dewar N, Knight R (2020) Estimation of the top of the saturated zone from airborne electromagnetic data. Geophysics 85:EN63–EN76. https://doi.org/10.1190/geo2019-0539.1

    Article  Google Scholar 

  • Diersch H-JG (2013) FEFLOW: finite element modeling of flow, mass and heat transport in porous and fractured media. Springer, Heidelberg, Germany

  • Doherty J (2003) Ground water model calibration using pilot points and regularization. Groundwater 41:170–177. https://doi.org/10.1111/j.1745-6584.2003.tb02580.x

    Article  Google Scholar 

  • Doherty J, Christensen S (2011) Use of paired simple and complex models to reduce predictive bias and quantify uncertainty. Water Resour Res 47. https://doi.org/10.1029/2011WR010763

  • Doherty J, Moore C (2020) Decision support modeling: data assimilation, uncertainty quantification, and strategic abstraction. Groundwater 58:327–337. https://doi.org/10.1111/gwat.12969

    Article  Google Scholar 

  • Dunlap E, Tang CCL (2006) Modelling the mean circulation of Baffin Bay. Atmosphere-Ocean 44:99–109. https://doi.org/10.3137/ao.440107

    Article  Google Scholar 

  • Dyke AS (2004) An outline of the deglaciation of North America with emphasis on central and northern Canada. Quat Glaciat Chronol Part II North Am 2b:373–424. https://doi.org/10.1016/S1571-0866(04)80209-4

    Article  Google Scholar 

  • Dyke A, Prest V (1987) Late Wisconsinan and Holocene history of the Laurentide Ice Sheet. Géographie Phys Quat 41:237–263. https://doi.org/10.7202/032681ar

    Article  Google Scholar 

  • Evans D (2005) Glacial landsystems, 1st edn. Routledge, London

    Google Scholar 

  • Farmani MB (2008) Estimation of unsaturated flow parameters by inverse modeling and GPR tomography. 7(4):1239–1252

  • Fitterman D V, Labson VF (2005) Electromagnetic induction methods for environmental problems. In: Near-surface geophysics. Society of Exploration Geophysicists, Houston, TX, pp 301–356

  • Galazoulas EC, Mertzanides YC, Petalas CP, Kargiotis EK (2015) Large scale electrical resistivity tomography survey correlated to hydrogeological data for mapping groundwater salinization: a case study from a multilayered coastal aquifer in Rhodope, northeastern Greece. Environ Process 2:19–35

    Article  Google Scholar 

  • Gallagher M, Doherty J (2007) Parameter estimation and uncertainty analysis for a watershed model. Environ Model Softw 22:1000–1020. https://doi.org/10.1016/j.envsoft.2006.06.007

    Article  Google Scholar 

  • Gascoyne JK, Eriksen AS (2005) Engineering geology: geophysics. In: Encyclopedia of Geology. Elsevier, Amsterdam

  • Goutaland D (2008) Caractérisation hydrogéophysique d’un dépôt fluvioglaciaire: évaluation de l’effet de l’hétérogénéité hydrodynamique sur les écoulements en zone non-saturée [Hydrogeophysical characterization of a fluvioglacial deposit: evaluation of the effect of hydrodynamic heterogeneity on flows in an unsaturated zone]. PhD Thesis, Lyon University (INSA), France, 246 pp

  • Greggio N, Giambastiani B, Balugani E, Amaini C, Antonellini M (2018) High-resolution electrical resistivity tomography (ERT) to characterize the spatial extension of freshwater lenses in a salinized coastal aquifer. Water 10:1067. https://doi.org/10.3390/w10081067

    Article  Google Scholar 

  • Hill MC (2000) Methods and guidelines for effective model calibration. In: Building partnerships. US Geological Survey, Denver, CO, pp 1–10

    Google Scholar 

  • Hill MC (2006) The practical use of simplicity in developing ground water models. Groundwater 44:775–781. https://doi.org/10.1111/j.1745-6584.2006.00227.x

    Article  Google Scholar 

  • Hinnell AC, Ferré TPA, Vrugt JA, Huisman J-A, Moysey S, Rings J, Kowalsky, M-B (2010) Improved extraction of hydrologic information from geophysical data through coupled hydrogeophysical inversion. Water Resour Res 46

  • Hudon-Gagnon E, Chesnaux R, Cousineau PA, Rouleau A (2011) A methodology to adequately simplify aquifer models of quaternary deposits: preliminary results. In: Proceedings of GeoHydro 2011, Joint Meeting of the Canadian Quaternary Association and the Canadian Chapter of the International Association of Hydrogeologists, Quebec City, QC, August 28–31, 2011

  • Hudon-Gagnon E, Chesnaux R, Cousineau PA, Rouleau A (2015) A hydrostratigraphic simplification approach to build 3D groundwater flow numerical models: example of a Quaternary deltaic deposit aquifer. Environ Earth Sci 74:4671–4683. https://doi.org/10.1007/s12665-015-4439-y

    Article  Google Scholar 

  • Huisman JA, Hubbard SS, Redman JD, Annan AP (2003) Measuring soil water content with ground penetrating radar: a review. Vadose Zone J 2:476–491

    Google Scholar 

  • Huisman JA, Rings J, Vrugt JA, Sorg J, Vereecken H (2010) Hydraulic properties of a model dike from coupled Bayesian and multi-criteria hydrogeophysical inversion. J Hydrol 380:62–73

    Article  Google Scholar 

  • Kalisperi D, Kouli M, Vallianatos F, Soupios P, Kershaw S, Lydakis-Simantiris N (2018) A transient ElectroMagnetic (TEM) method survey in north-central coast of Crete, Greece: evidence of seawater intrusion. Geosciences 8:107. https://doi.org/10.3390/geosciences8040107

    Article  Google Scholar 

  • Kowalsky MB, Finsterle S, Rubin Y (2004) Estimating flow parameter distributions using ground-penetrating radar and hydrological measurements during transient flow in the vadose zone. Adv Water Resour 27:583–599. https://doi.org/10.1016/j.advwatres.2004.03.003

    Article  Google Scholar 

  • Kowalsky MB, Finsterle S, Peterson J, Hubbard S, Rubin Y, Majer E, Ward A, Gee G (2005) Estimation of field-scale soil hydraulic and dielectric parameters through joint inversion of GPR and hydrological data. Water Resour Res 41

  • Landry B, Beaulieu J, Gauthier M, Lucotte M, Moingt S, Occhietti S, Pinti DL, Quirion M (2012) Notions de géologie [Notions of geology], 4nd edn. Modulo, Montréal, QC

    Google Scholar 

  • Légaré-Couture G, Leblanc Y, Parent M, Lacasse K, Campeau S (2018) Three-dimensional hydrostratigraphical modelling of the regional aquifer system of the St. Maurice Delta Complex (St. Lawrence Lowlands, Canada). Can Water Resour J/Rev Can Ressour Hydriques 43:92–112. https://doi.org/10.1080/07011784.2017.1316215

    Article  Google Scholar 

  • Lévesque Y, Saeidi A, Rouleau A (2016) Estimating earth pressure exerted by the backfill on the vertical pillars in underground mine stopes. In: Proceedings of the 69th Canadian Geotechnical Conference and the 11th Joint CGS/IAH-CNC Groundwater Conference (GeoVancouver-2016), Vancouver, Canada, October, 2016, pp 1–7. https://doi.org/10.6084/m9.figshare.20407218

  • Lévesque Y, Saeidi A, Rouleau A (2017) An earth pressure coefficient based on the geomechanical and geometric parameters of backfill in a mine stope. Int J Geo-Eng 8:1–15. https://doi.org/10.1186/s40703-017-0065-8

    Article  Google Scholar 

  • Lévesque Y, St-Onge G, Lajeunesse P, Desiage P, Brouard E (2019) Defining the maximum extent of the Laurentide Ice Sheet in Home Bay (eastern Arctic Canada) during the Last Glacial episode. Boreas 49:52–70. https://doi.org/10.1111/bor.12415

    Article  Google Scholar 

  • Lévesque Y, Walter J, Chesnaux R (2021) Transient Electromagnetic (TEM) Surveys as a first approach for characterizing a regional aquifer: the case of the Saint-Narcisse Moraine, Quebec, Canada. Geosciences 11:415–442. https://doi.org/10.3390/geosciences11100415

    Article  Google Scholar 

  • Li C, Doble R, Hatch M, Heinson G, Kay B (2021) Constraining regional-scale groundwater transport predictions with multiple geophysical techniques. J Hydrol Reg Stud 36:100841

    Article  Google Scholar 

  • Loke MH (1999) Time-lapse resistivity imaging inversion. Proceedings of the 5th Meeting of the Environmental and Engineering. Geophys Soc Eur Sect Em 1:1–12. https://doi.org/10.4133/1.2922877

    Article  Google Scholar 

  • Loke MH (2000) Electrical imaging surveys for environmental and engineering studies: a practical guide to 2-D and 3-D surveys. USM, Penang, Malaysia

  • Loke MH (2006) RES2DINV ver. 3.55, rapid 2-D resistivity & IP inversion using the least-squares method. Softw Man 139:131–152. https://doi.org/10.1111/j.1365-2478.1996.tb00142.x

    Article  Google Scholar 

  • Loke MH, Barker RD (1995) Least-squares deconvolution of apparent resistivity pseudosections. Geophysics 60:1682–1690. https://doi.org/10.1190/1.1443900

    Article  Google Scholar 

  • Loke MH, Barker RD (1996) Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method 1. Geophys Prospect 44:131–152

    Article  Google Scholar 

  • Loke MH, Barker RD (2006) Practical techniques for 3D resistivity surveys and data inversion1. Geophys Prospect 44:499–523. https://doi.org/10.1111/j.1365-2478.1996.tb00162.x

    Article  Google Scholar 

  • MacInnes S, Raymond M (2001) ZONGE data processing two-dimensional, smooth-Model CSAMT Inversion version 3.00. Zonge, Tuscon, AZ, 41 pp

  • MacInnes S, Durham J, Dickerson J, Snyder S, Zonge K (2001) Fast TEM for UXO mapping at Gambell, Saint Lawrence Island, Alaska. In: UXO/Countermine Forum, New Orleans, LA, April 2001

  • Margold M, Stokes CR, Clark CD (2015) Ice streams in the Laurentide Ice Sheet: identification, characteristics and comparison to modern ice sheets. Earth-Science Rev 143:117–146. https://doi.org/10.1016/j.earscirev.2015.01.011

    Article  Google Scholar 

  • Mari JL, Arens G, Chapellier D, Gaudiani P (1998) Geophysique de gisement et de genie civil [Geophysics for deposits and civil engineering]. OSTI, Paris, France

  • Marker PA, Foged N, He X, Christiansen AV, Refsgaard JC, Auken E, Bauer-Gottwein P (2015) Performance evaluation of groundwater model hydrostratigraphy from airborne electromagnetic data and lithological borehole logs. Hydrol Earth Syst Sci 19:3875–3890. https://doi.org/10.5194/hess-19-3875-2015

    Article  Google Scholar 

  • McClymont AF, Hayashi M, Bentley LR, Muir D, Ernst E (2010) Groundwater flow and storage within an alpine meadow-talus complex. Hydrol Earth Syst Sci 14. https://doi.org/10.5194/hess-14-859-2010

  • McClymont AF, Roy JW, Hayashi M, Maurer H, Langston G (2011) Investigating groundwater flow paths within proglacial moraine using multiple geophysical methods. J Hydrol 399:57–69

    Article  Google Scholar 

  • Milsom J (2003) Field geophysics. Wiley Oxford

    Google Scholar 

  • Nabighian MN (1988) Electromagnetic methods in applied geophysics. Soc. Explor. Geophys., Tulsa, OK

  • Neal A (2004) Ground-penetrating radar and its use in sedimentology: principles, problems and progress. Earth-Sci Rev 66:261–330. https://doi.org/10.1016/j.earscirev.2004.01.004

    Article  Google Scholar 

  • Neal A, Roberts CL (2000) Applications of ground-penetrating radar (GPR) to sedimentological, geomorphological and geoarchaeological studies in coastal environments. Geol Soc London Spec Publ 175:139–171. https://doi.org/10.1144/GSL.SP.2000.175.01.12

    Article  Google Scholar 

  • Occhietti S (1977) Stratigraphie du Wisconsinien de la région de Trois-Rivières-Shawinigan, Québec [Wisconsinan stratigraphy of the Trois-Rivières-Shawinigan region, Québec]. Géographie Phys Quat 31:307–322. https://doi.org/10.7202/1000280ar

    Article  Google Scholar 

  • Occhietti S (2007) The Saint-Narcisse morainic complex and early Younger Dryas events on the southeastern margin of the Laurentide Ice Sheet. Géographie Phys Quat 61:89–117. https://doi.org/10.7202/038987ar

    Article  Google Scholar 

  • Occhietti S, ChartierH M, Hillaire-Marcel C, Cournoyer M, Cumbaa S, Harington R (2001) Paléoenvironnements de la Mer de Champlain dans la région de Québec, entre 11 300 et 9750 BP: le site de Saint-Nicolas [Paleoenvironments of the Champlain Sea in the region of Québec, between 11,300 and 9,750 BP: the site of Saint-Nicolas]. Géographie Phys Quat 55:23–46. https://doi.org/10.7202/005660ar

    Article  Google Scholar 

  • Palacky GJ (1993) Use of airborne electromagnetic methods for resource mapping. Adv Sp Res 13:5–14. https://doi.org/10.1016/0273-1177(93)90196-I

    Article  Google Scholar 

  • Pandey LMS, Shukla SK, Habibi D (2015) Electrical resistivity of sandy soil. Géotechnique Lett 5:178–185. https://doi.org/10.1680/jgele.15.00066

    Article  Google Scholar 

  • Parent M, Occhietti S (1988) Late Wisconsinan deglaciation and Champlain sea invasion in the St. Lawrence Valley, Québec. Géogr Phys Quat 42:215–246. https://doi.org/10.7202/032734ar

    Article  Google Scholar 

  • Parent M, Occhietti S (1999) Late Wisconsinan deglaciation and glacial lake development in the Appalachians of southeastern Québec. Géographie Phys Quat 53:117–135. https://doi.org/10.7202/004859ar

    Article  Google Scholar 

  • Parsekian AD, Singha K, Minsley BJ, Holbrook WS, Slater L (2015) Multiscale geophysical imaging of the critical zone. Rev Geophys 53:1–26. https://doi.org/10.1002/2014RG000465

  • Pondthai P, Everett ME, Micallef A, Weymer BA, Faghih Z, Haroon A, Jegen M (2020) 3D characterization of a coastal freshwater aquifer in SE Malta (Mediterranean Sea) by time-domain electromagnetic. Water 12:1566. https://doi.org/10.3390/w12061566

    Article  Google Scholar 

  • Preisig G, Cornaton FJ, Perrochet P (2014) Regional flow and deformation analysis of basin-fill aquifer systems using stress-dependent parameters. Groundwater 52:125–135. https://doi.org/10.1111/gwat.12034

    Article  Google Scholar 

  • Reynolds JM (1987) Dielectric analysis of rocks: a forward look. Geophys J Royal Astronom Soc, Oxford, 457 pp

  • Reynolds JM (2011) An introduction to applied and environmental geophysics, 2nd edn. Wiley, Chichester, UK

    Google Scholar 

  • Rivers T, van Gool JAM, Connelly JN (1993) Contrasting tectonic styles in the northern Grenville province: implications for the dynamics of orogenic fronts. Geology 21:1127–1130. https://doi.org/10.1130/0091-7613(1993)021<1127:CTSITN>2.3.CO;2

    Article  Google Scholar 

  • Ross M, Parent M, Lefebvre R (2005) 3D geologic framework models for regional hydrogeology and land-use management: a case study from a Quaternary basin of southwestern Quebec, Canada. Hydrogeol J 13:690–707. https://doi.org/10.1007/s10040-004-0365-x

    Article  Google Scholar 

  • Shi X, Polycarpou AA (2005) Measurement and modeling of normal contact stiffness and contact damping at the meso scale. J Vib Acoust 127:52. https://doi.org/10.1115/1.1857920

    Article  Google Scholar 

  • Shukla SK, Yin J-H (2006) Fundamentals of geosynthetic engineering, 1st edn. Taylor and Francis, Balkema

    Book  Google Scholar 

  • Slater L (2007) Near surface electrical characterization of hydraulic conductivity: from petrophysical properties to aquifer geometries—a review. Surv Geophys 28:169–197. https://doi.org/10.1007/s10712-007-9022-y

    Article  Google Scholar 

  • Spies BR, Frischknecht FC (1991) Electromagnetic sounding: electromagnetic methods. Appl Geophys 2:285–426

    Google Scholar 

  • Steenhuis TS, Van der Molen WH (1986) The Thornthwaite-Mather procedure as a simple engineering method to predict recharge. J Hydrol 84:221–229. https://doi.org/10.1016/0022-1694(86)90124-1

    Article  Google Scholar 

  • Topp GC, Davis JL, Annan AP (1980) Electromagnetic determination of soil water content: measurements in coaxial transmission lines. Water Resour Res 16:574–582. https://doi.org/10.1029/WR016i003p00574

    Article  Google Scholar 

  • Tran AP, Vanclooster M, Zupanski M, Lambot S (2014) Joint estimation of soil moisture profile and hydraulic parameters by ground-penetrating radar data assimilation with maximum likelihood ensemble filter. Water Resour Res 50:3131–3146. https://doi.org/10.1002/2013WR014583

    Article  Google Scholar 

  • Walter J, Rouleau A, Chesnaux R, Lambert M, Daigneault R (2018) Characterization of general and singular features of major aquifer systems in the Saguenay-Lac-Saint-Jean region. Can Water Resour J/Rev Can Resour Hydrique 43:75–91. https://doi.org/10.1080/07011784.2018.1433069

    Article  Google Scholar 

  • Wise S (2000) Assessing the quality for hydrological applications of digital elevation models derived from contours. Hydrol Process 14:1909–1929. https://doi.org/10.1002/1099-1085(20000815/30)14:11/12<1909::AID-HYP45>3.0.CO;2-6

    Article  Google Scholar 

  • Yu Y, Weihermüller L, Klotzsche A, Lärm L, Vereecken H, Huisman JA (2021) Sequential and coupled inversion of horizontal borehole ground penetrating radar data to estimate soil hydraulic properties at the field scale. J Hydrol 596:126010. https://doi.org/10.1016/j.jhydrol.2021.126010

    Article  Google Scholar 

Download references

Acknowledgements

We thank the PACES team for calculating the regional recharge and allowing us to collect the necessary geophysical data during the summers of 2020 and 2021. We also sincerely thank Pierre-Luc Dallaire (PACES-UQTR), Mélanie Lambert (PACES-UQAC), and David Noel (UQAC) for their technical support and advice. Thanks also go to Éric Rosa (PACES-UQTR) for allowing us access to his MALÅ GX to collect the GPR data and PACES-UQTR for their technical support and advice in processing the data and learning how to operate the various geophysical instruments.

Funding

This research was funded by the Groundwater Knowledge Acquisition Program (PACES) and the Natural Sciences and Engineering Research Council of Canada (NSERC) through a postsecondary research grant to Y.L., grant number ESD3-546526-2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Lévesque.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 565 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lévesque, Y., Chesnaux, R. & Walter, J. Using geophysical data to assess groundwater levels and the accuracy of a regional numerical flow model. Hydrogeol J 31, 351–370 (2023). https://doi.org/10.1007/s10040-023-02591-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-023-02591-z

Keywords

Navigation