Skip to main content
Log in

Effect of particle breakage-induced frictional weakening on the dynamics of landslides

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Field observations have shown that sliding zones in large landslides often exhibit much lower frictional resistances than their ordinary values; this behavior causes great difficulties in predicting the dynamics and runout distances of landslides. Particle breakage is believed to be a reason for inducing frictional weakening. This study aims to reproduce the frictional weakening phenomenon induced by particle breakage in landslides and investigate its effect on the dynamics and runout distances of landslides. A constitutive model capable of simulating the particle breakage development during large shear strain was employed to describe the mechanical behavior of sliding soils. In addition, the material point method (MPM) was adopted to overcome the difficulties in simulating the large deformations of landslides. The simulation results showed that a larger shear deformation in the sliding zone caused greater particle breakage, leading to a greater decrease in the frictional resistance, which in turn aggravated the shear deformation and particle breakage; consequently, concentrated shear deformation and particle breakage were found in the sliding zones. Particle breakage-induced frictional weakening can change the landslide pattern from shallow sliding of a linear sliding surface to deep sliding of a circular sliding surface and significantly increase the runout distance.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Lucas, A., Mangeney, A., Ampuero, J.: Frictional velocity-weakening in landslides on earth and on other planetary bodies. Nat. Commun. 5, 3417 (2014)

    Article  ADS  Google Scholar 

  2. Wang, F., Zhang, Y., Huo, Z., Peng, X., Wang, S., Yamasaki, S.: Mechanism for the rapid motion of the qianjiangping landslide during reactivation by the first impoundment of the three gorges dam reservoir, China. Landslides 5, 379–386 (2008)

    Article  Google Scholar 

  3. Dang, K., Sassa, K., Fukuoka, H., Sakai, N., Sato, Y., Takara, K., et al.: Mechanism of two rapid and long-runout landslides in the 16 April 2016 kumamoto earthquake using a ring-shear apparatus and computer simulation (ls-rapid). Landslides 13, 1–10 (2016)

    Article  Google Scholar 

  4. Sassa, K.: Prediction of earthquake induced landslides. Special Lecture at 7th International Symposium on Landslides, Trondheim. Landslide 1, 115–132 (1996)

    Google Scholar 

  5. Sassa, K., Fukuoka, H., Wang, G., Ishikawa, N.: Undrained dynamic-loading ring-shear apparatus and its application to landslide dynamics. Landslides 1, 7–19 (2004)

    Article  Google Scholar 

  6. Hu, W., Huang, R., Mcsaveney, M., Yao, L., Xu, Q., Feng, M., Zhang, X.: Superheated steam, hot CO2 and dynamic recrystallization from frictional heat jointly lubricated a giant landslide: field and experimental evidence. Earth Planet Sci. Lett. 510, 85–93 (2019)

    Article  ADS  Google Scholar 

  7. Kent, P.: The transport mechanism in catastrophic rock falls. J. Geol. 74, 79–83 (1966)

    Article  ADS  Google Scholar 

  8. Melosh, H.: Dynamical weakening of faults by acoustic fluidization. Nature 379, 601–606 (1996)

    Article  ADS  Google Scholar 

  9. Davies, T., Mcsaveney, M., Boulton, C.: Elastic strain energy release from fragmenting grains: effects on fault rupture. J. Struct. Geol. 38, 265–277 (2012)

    Article  ADS  Google Scholar 

  10. Iverson, R.M., George, D.L.: Modelling landslide liquefaction, mobility bifurcation and the dynamics of the 2014 Oso disaster. Géotechnique 66, 175–187 (2015)

    Article  Google Scholar 

  11. Iverson, R.M., Reid, M., Logan, M., LaHusen, R., Godt, J.W., Griswold, J.: Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment. Nat. Geosci. 4, 116–121 (2011)

    Article  ADS  Google Scholar 

  12. Liu, X., Wang, Y., Li, D.: Numerical simulation of the 1995 rainfall-induced fei tsui road landslide in hong kong: new insights from hydro-mechanically coupled material point method. Landslides 17, 2755–2775 (2020)

    Article  Google Scholar 

  13. Pastor, M., Blanc, T., Haddad, B., Petrone, S., Sanchez, M.M., Drempetic, V., Issler, D., Crosta, G.B., Cascini, L., Sorbino, G., Cuomo, S.: Application of a SPH depth-integrated model to landslide run-out analysis. Landslides 11, 793–812 (2014)

    Article  Google Scholar 

  14. Wang, G., Sassa, K.: Pore-pressure generation and movement of rainfall-induced landslides: effects of grain size and fine-particle content. Eng. Geol. 69, 109–125 (2003)

    Article  Google Scholar 

  15. Sassa, K.: Mechanism of flows in granular soils. In Proceedings of the International Conference on Geotechnical and Geological Engineering, Melbourne, Australia, 19–24 November 2000. A. A. Balkema, Rotterdam, the Netherlands, pp 1671–1702 (2000)

  16. Davies, T., Mcsaveney, M., Hodgson, K.: A fragmentation-spreading model for long- runout rock avalanches. Can. Geotech. J. 36, 1096–1110 (1999)

    Article  Google Scholar 

  17. Sadrekarimi, A., Olson, S.M.: Particle damage observed in ring shear tests on sands. Can. Geotech. J. 47, 497–515 (2010)

    Article  Google Scholar 

  18. Sassa, K., Fukuoka, H., Wang, F., Wang, G.: Dynamic properties of earthquake-induced large-scale rapid landslides within past landslide masses. Landslides 2, 125–134 (2005)

    Article  ADS  Google Scholar 

  19. Fukuoka, H., Sassa, K., Wang, G.: Influence of shear speed and normal stress on the shear behavior and shear zone structure of granular materials in naturally drained ring shear tests. Landslides 4, 63–74 (2007)

    Article  Google Scholar 

  20. Okada, Y., Sassa, K., Fukuoka, H.: Excess pore pressure and grain crushing of sands by means of undrained and naturally drained ring-shear tests. Eng. Geol. 75, 325–343 (2004)

    Article  Google Scholar 

  21. Gerolymos, N., Gazetas, G.: A model for grain-crushing-induced landslides—application to Nikawa, Kobe 1995. Soil Dyn. Earthq. Eng. 27, 803–817 (2007)

    Article  Google Scholar 

  22. Gerolymos, N.: Numerical modeling of seismic triggering, evolution, and deposition of rapid landslides: application to Higashi-Takezawa (2004). Int. J. Numer. Anal. Methods Geomech. 34, 383–407 (2010)

    MATH  Google Scholar 

  23. Zhang, M., Wang, Z., Sun, L.: Research on rapid and long-runout mechanisms of rockslide debris using ring shear tests (in Chinese). Chin. J. Rock Mech. Eng. 35, 2673–2681 (2016)

    Google Scholar 

  24. Muller, A., Vargas, E.: Stability analysis of a slope under impact of a rock block using the generalized interpolation material point method (GIMP). Landslides 16, 751–764 (2019)

    Article  Google Scholar 

  25. Bisht, V., Salgado, R., Prezzi, M.: Simulating penetration problems in incompressible materials using the material point method. Comput. Geotech. 133, 103593 (2021)

    Article  Google Scholar 

  26. Lorenzo, R., Cunha, R., Neto, M., Nairn, J.: Numerical simulations of deep penetration problems using the material point method. Geomech. Eng. 11, 59–76 (2016)

    Article  Google Scholar 

  27. Ceccato, F., Yerro, A., Girardi, V., Simonini, P.: Two-phase dynamic mpm formulation for unsaturated soil. Comput. Geotech. 129, 103876 (2020)

    Article  Google Scholar 

  28. Ceccato, F., Girardi, V., Simonini, P.: Developing and testing multiphase MPM approaches for the stability of dams and river embankments. In: Proceedings of XXIV AIMETA Conference 2019. AIMETA 2019. Lecture Notes in Mechanical Engineering. Springer, Cham (2020)

  29. Bui, H., Fukagawa, R., Sako, K., Ohno, S.: Lagrangian meshfree particles method (sph) for large deformation and failure flows of geomaterial using elastic-plastic soil constitutive model. Int. J. Numer. Anal. Method Geomech. 32, 1537–1570 (2010)

    Article  MATH  Google Scholar 

  30. Mori, H., Fukuhara, N., Hattori, A., Kuwano, R., Sasaki, T.: The sph method for simulating the progressive sliding failure of a river levee. Jpn. Geotech. J. 9, 687–696 (2014)

    Article  Google Scholar 

  31. Karim, M., Nogami, T., Wang, J.: Analysis of transient response of saturated porous elastic soil under cyclic loading using element-free galerkin method. Int. J. Solids Struct. 39, 6011–6033 (2002)

    Article  MATH  Google Scholar 

  32. Modaressi, H., Aubert, P.: Elemen-free galerkin method for deforming multiphase porous media. Int. J. Numer. Method Eng. 42, 313–340 (1998)

    Article  MATH  Google Scholar 

  33. Jiang, J., Ehret, D., Wei, X., Rohn, J., Ling, H., Yan, S., et al.: Numerical simulation of qiaotou landslide deformation caused by drawdown of the three gorges reservoir, China. Environ. Earth Sci. 62, 411–419 (2011)

    Article  Google Scholar 

  34. Guglielmi, Y., Cappa, F.: Regional-scale relief evolution and large landslides: insights from geomechanical analyses in the tinee valley (southern french alps). Geomorphology 117, 121–129 (2010)

    Article  ADS  Google Scholar 

  35. Li, X., Zhao, J., Soga, K.: A new physically based impact model for debris flow. Géotechnique 71(8), 674–685 (2021)

    Article  Google Scholar 

  36. Kong, Y., Li, X., Zhao, J.: Quantifying the transition of impact mechanisms of geophysical flows against flexible barrier. Eng. Geol. 289, 106188 (2021)

    Article  Google Scholar 

  37. Fern, E., Soga, K.: The role of constitutive models in MPM simulations of granular column collapses. Acta Geotech. 11, 659–678 (2016)

    Article  Google Scholar 

  38. Feng, K.W., Wang, G., Huang, D.R., Jin, F.: Material point method for large-deformation modeling of coseismic landslide and liquefaction-induced dam failure. Soil Dyn. Earthq. Eng. 150, 106907 (2021)

    Article  Google Scholar 

  39. Soga, K., Alonso, E., Yerro, A., Kumar, K., Bandara, S.: Trends in large-deformation analysis of landslide mass movements with particular emphasis on the material point method. Géotechnique 66(3), 248–273 (2016)

    Article  Google Scholar 

  40. Einav, I.: Breakage mechanics—part I: theory. J. Mech. Phys. Solids. 55, 1274–1297 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Hardin, B.: Crushing of soil particles. J. Geotech. Geoenviron. Eng. 111, 1177–1192 (1985)

    Article  Google Scholar 

  42. Indraratna, B., Sun, Q., Nimbalkar, S.: Observed and predicted behaviour of rail ballast under monotonic loading capturing particle breakage. Can. Geotech. J. 52, 73–86 (2015)

    Article  Google Scholar 

  43. Marsal, R.: Mechanical properties of rockfill embankment dam engineering Casagrande Volume, pp. 109–200. Wiley, New York (1973)

    Google Scholar 

  44. Peng, Y., Ding, X., Xiao, Y., Deng, X., Deng, W.: Detailed amount of particle breakage in non-uniformly graded sands under one-dimensional compression. Can. Geotech. J. 57(8), 1239–1246 (2019)

    Article  Google Scholar 

  45. Peng, Y., Liu, H., Li, C., Ding, X., Deng, X., Wang, C.: The detailed particle breakage around the pile in coral sand. Acta Geotech. 16, 1971–1981 (2021)

    Article  Google Scholar 

  46. Wang, G., Wang, Z., Ye, Q., Zha, J.: Particle breakage evolution of coral sand using triaxial compression tests. J. Rock Mech. Geotech. Eng. 13(2), 321–334 (2021)

    Article  Google Scholar 

  47. Chávez, C., Alonso, E.E.: A constitutive model for crushed granular aggregates which includes suction effects. Soils Found. 43(4), 215–228 (2003)

    Article  Google Scholar 

  48. Wang, G., Ye, Q., Zha, J.: Experimental study on mechanical behavior and particle crushing of coral sand-gravel fill (in Chinese). Chin. J. Geotech. Eng. 40(5), 802–810 (2018)

    Google Scholar 

  49. Wang, G., Wang, Z., Ye, Q., Wei, X.: Particle Breakage and deformation behavior of carbonate sand under drained and undrained triaxial compression. Int. J. Geomech. 20, 04020012 (2020)

    Article  Google Scholar 

  50. Wang, Z., Wang, G., Ye, Q.: A constitutive model for crushable sands involving compression and shear induced particle breakage. Comput. Geotech. 126, 103757 (2020)

    Article  Google Scholar 

  51. Li, X., Dafalias, Y.: Dilatancy for Cohesionless soils. Géotechnique 50, 449–460 (2000)

    Article  Google Scholar 

  52. Been, K., Jefferies, M.: A state parameter for sands. Géotechnique 35, 99–112 (1985)

    Article  Google Scholar 

  53. Bandara, S., Soga, K.: Coupling of soil deformation and pore fluid flow using material point method. Comput. Geotech. 63, 199–214 (2015)

    Article  Google Scholar 

  54. Su, Y., Tao, J., Jiang, S., Chen, Z., Lu, J.: Study on the fully coupled thermodynamic fluid–structure interaction with the material point method. Comp. Part Mech. 7(1), 225–240 (2019)

    Google Scholar 

  55. Bardenhagen, S., Kober, E.: The generalized interpolation material point method. Comput. Model Eng. Sci. 5, 477–495 (2004)

    Google Scholar 

  56. Sadeghirad, A., Brannon, R.M., Burghardt, J.: A convected particle domain interpolation technique to extend applicability of the material point method for problems involving massive deformations. Int. J. Numer. Methods Eng. 86, 1435–1456 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  57. Sadeghirad, A., Brannon, R.M., Guilkey, J.E.: Second-order convected particle domain interpolation (CPDI2) with enrichment for weak discontinuities at material interfaces. Int. J. Numer. Methods Eng. 95, 928–952 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  58. Steffen, M., Kirby, R.M., Berzins, M.: Analysis and reduction of quadrature errors in the material point method (MPM). Int. J. Numer. Anal. Methods Geomech. 76, 922–948 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Yang, X., Yang, Z., Zhu, S., He, P., Guo, R.: Researches on failure criteria of Lade-Duncan, Matsuoka-Nakai and Ottosen. Chin. J. Geotech. Eng. 28(3), 337–342 (2006)

    Google Scholar 

  60. Xu, Z.H., Sun, D.W.: Experimental study of rockfill particle breakage. Adv. Mater. Res. 900, 445–448 (2014)

    Article  Google Scholar 

  61. Sulsky, D., Zhou, S., Howard, L.: Application of a particle-in-cell method to solid mechanics. Comput. Phys. Commun. 87(1–2), 236–252 (1995)

    Article  ADS  MATH  Google Scholar 

  62. Richart, F.E., Jr., Hall, J.R., Woods, R.D.: Vibrations of soils and foundations. Prentice-Hall, Englewood Cliffs (1970)

    Google Scholar 

  63. Ishihara, K., Tatsuoka, F., Yasuda, S.: Undrained deformation and liquefaction of sand under cyclic stresses. Soils Found. 15(1), 29–44 (1975)

    Article  Google Scholar 

  64. Huang, M.S., Li, X.F., Jia, C.Q.: A double yield surface constitutive model for sand based on state-dependent critical state theory (in Chinese). Chin. J. Geotech. Eng. 32(11), 1764–1771 (2010)

    Google Scholar 

  65. Muir Wood, D., Maeda, K.: Changing grading of soil: effect on critical states. Acta Geotech. 3(1), 3–14 (2007)

    Article  Google Scholar 

  66. Ciantia, M.O., Arroyo, M., O’Sullivan, C., Gens, A., Liu, T.: Grading evolution and critical state in a discrete numerical model of Fontainebleau sand. Geotechnique 69(1), 1–15 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by National Natural Science Foundation of China (Grants 52079012) and Graduate Research and Innovation Foundation of Chongqing, China (Grant No. CYB20032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Wang, G. Effect of particle breakage-induced frictional weakening on the dynamics of landslides. Granular Matter 24, 72 (2022). https://doi.org/10.1007/s10035-022-01234-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-022-01234-6

Keywords

Navigation