Skip to main content
Log in

Capturing the inter-particle force distribution in granular material using LS-DEM

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Particle shape, as one of the most important physical ingredients of granular materials, can greatly alter the characteristic of inter-particle force distribution which is of vital importance in understanding the mechanical behavior of granular materials. However, currently both experimental and numerical studies remain limited in this regard. In this paper, we for the first time validate the ability of the level set discrete element method (LS-DEM) on capturing the inter-particle force distribution among particles of arbitrary shape. We first present the technical detail of LS-DEM; we then apply LS-DEM to simulate experiments of shearing granular materials composed of arbitrarily shaped particles. The proposed approach directly links experimentally measured material properties to model parameters such as contact stiffness without any calibration. Our results show that LS-DEM is able to not only capture the macro scale response such as stress and deformation, but also to reproduce the particle scale contact information such as the distribution of contact force magnitude, contact orientation and contact friction mobilization. Our work demonstrates the promising potential of LS-DEM on studying the mechanics and physics of natural granular material and on aiding design granular particle shape for novel macro-scale mechanical property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Richard, P., Nicodemi, M., Delannay, R., Ribiere, P., Bideau, D.: Slow relaxation and compaction of granular systems. Nat. Mater. 4(2), 121 (2005)

    Article  ADS  Google Scholar 

  2. Jaeger, H.M., Nagel, S.R., Behringer, R.P.: The physics of granular materials. Phys. Today 49, 32–39 (1996)

    Article  Google Scholar 

  3. Jaeger, H.M., Nagel, S.R., Behringer, R.P.: Granular solids, liquids, and gases. Rev. Mod. Phys. 68(4), 1259 (1996)

    Article  ADS  Google Scholar 

  4. Majmudar, T.S., Behringer, R.P.: Contact force measurements and stress-induced anisotropy in granular materials. Nature 435(7045), 1079 (2005)

    Article  ADS  Google Scholar 

  5. Iikawa, N., Bandi, M., Katsuragi, H.: Sensitivity of granular force chain orientation to disorder-induced metastable relaxation. Phys. Rev. Lett. 116(12), 128001 (2016)

    Article  ADS  Google Scholar 

  6. Cho, G.-C., Dodds, J., Santamarina, J.C.: Particle shape effects on packing density, stiffness, and strength: natural and crushed sands. J. Geotech. Geoenviron. Eng. 132(5), 591–602 (2006)

    Article  Google Scholar 

  7. Athanassiadis, A.G., Miskin, M.Z., Kaplan, P., Rodenberg, N., Lee, S.H., Merritt, J., Brown, E., Amend, J., Lipson, H., Jaeger, H.M.: Particle shape effects on the stress response of granular packings. Soft Matter 10(1), 48–59 (2014)

    Article  ADS  Google Scholar 

  8. Brodu, N., Dijksman, J.A., Behringer, R.P.: Spanning the scales of granular materials through microscopic force imaging. Nat. Commun. 6, 6361 (2015)

    Article  ADS  Google Scholar 

  9. Hurley, R., Hall, S., Andrade, J., Wright, J.: Quantifying interparticle forces and heterogeneity in 3d granular materials. Phys. Rev. Lett. 117(9), 098005 (2016)

    Article  ADS  Google Scholar 

  10. Hurley, R., Marteau, E., Ravichandran, G., Andrade, J.E.: Extracting inter-particle forces in opaque granular materials: beyond photoelasticity. J. Mech. Phys. Solids 63, 154–166 (2014)

    Article  ADS  Google Scholar 

  11. Cundall, P.A., Strack, O.D.: A discrete numerical model for granular assemblies. Geotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  12. Jean, M.: The non-smooth contact dynamics method. Comput. Methods Appl. Mech. Eng. 177(3–4), 235–257 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Da Cruz, F., Emam, S., Prochnow, M., Roux, J.-N., Chevoir, F.: Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys. Rev. E 72(2), 021309 (2005)

    Article  ADS  Google Scholar 

  14. Pazouki, A., Kwarta, M., Williams, K., Likos, W., Serban, R., Jayakumar, P., Negrut, D.: Compliant contact versus rigid contact: a comparison in the context of granular dynamics. Phys. Rev. E 96(4), 042905 (2017)

    Article  ADS  Google Scholar 

  15. Radjai, F., Jean, M., Moreau, J.-J., Roux, S.: Force distributions in dense two-dimensional granular systems. Phys. Rev. Lett. 77(2), 274 (1996)

    Article  ADS  Google Scholar 

  16. Radjai, F., Wolf, D.E., Jean, M., Moreau, J.-J.: Bimodal character of stress transmission in granular packings. Phys. Rev. Lett. 80(1), 61 (1998)

    Article  ADS  Google Scholar 

  17. Azéma, E., Radjai, F., Peyroux, R., Saussine, G.: Force transmission in a packing of pentagonal particles. Phys. Rev. E 76(1), 011301 (2007)

    Article  ADS  Google Scholar 

  18. Azéma, E., Radjaï, F.: Stress-strain behavior and geometrical properties of packings of elongated particles. Phys. Rev. E 81(5), 051304 (2010)

    Article  ADS  Google Scholar 

  19. Azéma, E., Radjaï, F.: Force chains and contact network topology in sheared packings of elongated particles. Phys. Rev. E 85(3), 031303 (2012)

    Article  ADS  Google Scholar 

  20. Azéma, E., Radjai, F., Saussine, G.: Quasistatic rheology, force transmission and fabric properties of a packing of irregular polyhedral particles. Mech. Mater. 41(6), 729–741 (2009)

    Article  Google Scholar 

  21. Azéma, E., Estrada, N., Radjai, F.: Nonlinear effects of particle shape angularity in sheared granular media. Phys. Rev. E 86(4), 041301 (2012)

    Article  ADS  Google Scholar 

  22. Voivret, C., Radjai, F., Delenne, J.-Y., El Youssoufi, M.S.: Multiscale force networks in highly polydisperse granular media. Phys. Rev. Lett. 102(17), 178001 (2009)

    Article  ADS  MATH  Google Scholar 

  23. Staron, L., Vilotte, J.-P., Radjai, F.: Preavalanche instabilities in a granular pile. Phys. Rev. Lett. 89(20), 204302 (2002)

    Article  ADS  Google Scholar 

  24. Staron, L., Radjai, F.: Friction versus texture at the approach of a granular avalanche. Phys. Rev. E 72(4), 041308 (2005)

    Article  ADS  Google Scholar 

  25. Azéma, E., Preechawuttipong, I., Radjai, F.: Binary mixtures of disks and elongated particles: texture and mechanical properties. Phys. Rev. E 94(4), 042901 (2016)

    Article  ADS  Google Scholar 

  26. Ferellec, J.-F., McDowell, G.R.: A method to model realistic particle shape and inertia in dem. Granul. Matter 12(5), 459–467 (2010)

    Article  MATH  Google Scholar 

  27. Farhadi, S., Behringer, R.P.: Dynamics of sheared ellipses and circular disks: effects of particle shape. Phys. Rev. Lett. 112(14), 148301 (2014)

    Article  ADS  Google Scholar 

  28. Kawamoto, R., Andò, E., Viggiani, G., Andrade, J.E.: Level set discrete element method for three-dimensional computations with triaxial case study. J. Mech. Phys. Solids 91, 1–13 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  29. Marteau, E., Andrade, J.: Do force chains exist? Effect of grain shape on force transmission and mobilized strength of granular materials. J. Mech. Phys. Solids (2018)

  30. Silbert, L.E., Ertaş, D., Grest, G.S., Halsey, T.C., Levine, D., Plimpton, S.J.: Granular flow down an inclined plane: Bagnold scaling and rheology. Phys. Rev. E 64(5), 051302 (2001)

    Article  ADS  Google Scholar 

  31. Ai, J., Chen, J.-F., Rotter, J.M., Ooi, J.Y.: Assessment of rolling resistance models in discrete element simulations. Powder Technol. 206(3), 269–282 (2011)

    Article  Google Scholar 

  32. Estrada, N., Azéma, E., Radjai, F., Taboada, A.: Identification of rolling resistance as a shape parameter in sheared granular media. Phys. Rev. E 84(1), 011306 (2011)

    Article  ADS  Google Scholar 

  33. Luding, S.: Introduction to discrete element methods: basic of contact force models and how to perform the micro-macro transition to continuum theory. Eur. J. Environ. Civ. Eng. 12(7–8), 785–826 (2008)

    Article  Google Scholar 

  34. Kruggel-Emden, H., Simsek, E., Rickelt, S., Wirtz, S., Scherer, V.: Review and extension of normal force models for the discrete element method. Powder Technol. 171(3), 157–173 (2007)

    Article  Google Scholar 

  35. Kawamoto, R., Andò, E., Viggiani, G., Andrade, J.E.: All you need is shape: predicting shear banding in sand with ls-dem. J. Mech. Phys. Solids 111, 375–392 (2018)

    Article  ADS  Google Scholar 

  36. Marteau, E., Andrade, J.: A novel experimental device for investigating the multiscale behavior of granular materials under shear. Granul. Matter 19, 77 (2017)

    Article  Google Scholar 

  37. Lim, K., Kawamoto, R., Andò, E., Viggiani, G., Andrade, J.: Multiscale characterization and modeling of granular materials through a computational mechanics avatar: a case study with experiment. Acta Geotech. 11, 243–253 (2016)

    Article  Google Scholar 

  38. Soille, P.: Morphological Image Analysis: Principles and Applications, 2nd edn. Springer, New York (2003)

    MATH  Google Scholar 

  39. Gonzalez, R., Woods, R., Eddins, S.: Digital Image Processing using Matlab. Pearson Prentice Hall, New Jersey (2004)

    Google Scholar 

  40. Russ, J.: The Image Processing Handbook, 5th edn. CRC Press, Boca Raton (2007)

    MATH  Google Scholar 

  41. Vic-2D, Reference Manual. http://www.correlatedsolutions.com/supportcontent/Vic-2D-v6-Manual.pdf

  42. Sutton, M., Orteu, J., Schreier, H.: Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications. Springer, New York (2009)

    Google Scholar 

  43. Pan, B., Qian, K., Xie, H., Asundi, A.: Robust full-field measurement considering rotation using digital image correlation. Meas. Sci. Technol. 20, 062001 (2009)

    Article  ADS  Google Scholar 

  44. Andrade, J., Avila, C.: Granular element method (gem): linking inter-particle forces with macroscopic loading. Granul. Matter 14, 51–61 (2012)

    Article  Google Scholar 

  45. Christoffersen, J., Mehrabadi, M., Nemat-Nasser, S.: A micromechanical description of granular material behavior. J. Appl. Mech. 48(2), 339–344 (1981)

    Article  ADS  MATH  Google Scholar 

  46. Popov, V.L.: Contact Mechanics and Friction. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  47. Lim, K.-W., Andrade, J.E.: Granular element method for three-dimensional discrete element calculations. Int. J. Numer. Anal. Methods Geomech. 38(2), 167–188 (2014)

    Article  Google Scholar 

  48. Hurley, R., Lim, K., Ravichandran, G., Andrade, J.: Dynamic inter-particle force inference in granular materials: method and application. Exp. Mech. 56(2), 217–229 (2016)

    Article  Google Scholar 

  49. Fluoroproducts, D.: Teflon® ptfe fluoropolymer resin: properties handbook. Technical Report, DuPontTM Technical Report H-37051-3 (1996)

  50. Clough, R.W., Penzien, J.: Dynamics of Structures. Computers & Structures, Berkeley (1995)

    MATH  Google Scholar 

  51. Hunt, M.L., Vriend, N.M.: Booming sand dunes. Ann. Rev. Earth Planet. Sci. 38, 281–301 (2010)

    Article  ADS  Google Scholar 

  52. Murphy, K.A., Reiser, N., Choksy, D., Singer, C.E., Jaeger, H.M.: Freestanding loadbearing structures with z-shaped particles. Granul. Matter 18(2), 26 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José E. Andrade.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Resolve the mesh-dependency of current LS-DEM implementation

As mentioned in Sect. 2, in LS-DEM currently force and moment contributions from all penetrating nodes are considered, which in fact will cause LS-DEM to be mesh-dependent in displacement controlled loading condition - the mechanical response of a particle system will depend sensitively on the discretized fineness of each particle’s surface, i.e. how many nodes each particle has. However, such mesh-dependent behavior vanishes for force controlled loading condition. To see this, using both LS-DEM and DEM with exactly the same model parameters we present several numerical tests of two identical frictional disk with radius \(R = 15 \,\,\text {mm}\) vertically stacked between two rigid walls with the top wall being moved downward via either displacement controlled (\(\Delta\)) or force controlled condition (f), as shown in Fig. 12. In either case we output two quantities: the contact force magnitude |F|, and the inter-particle penetration d. For DEM \(d = 2R - |\varvec{r}_1 -\varvec{r}_2|\) where \(\varvec{r}_1,\varvec{r}_2\) are the centroid position of the two particle respectively; for LS-DEM \(d = \sum _zd_z\) where we sum over the penetration \(d_z\) of all penetrating nodes. For LS-DEM simulation each disk surface is randomly spatially discretized with either 30, 50 or 70 nodes. As shown in Fig. 13, the mesh-dependence problem appears for displacement controlled loading condition while vanishes for force controlled case. This can be explained by the following: in displacement controlled case the top wall is displaced downward for a certain amount that will lead to larger contact force with denser disk surface discretization, which subsequently leads to increasing |F| and d; while for the force controlled case, external force is already known and is used to compute displacement by enforcing equilibrium − no matter how dense the surface discretization is the total force from all penetrating nodes should always equilibrate the externally prescribed one. Therefore the results for |F| and d all collapse onto those computed from DEM.

Fig. 12
figure 12

a Displacement controlled and force controlled loading condition with prescribed \(\Delta\) and f respectively, and both with output the inter-particle force F and penetration d; b, c Loading curve of input \(\Delta\) and f

Fig. 13
figure 13

Inter-particle force magnitude |F| and penetration d response for displacement controlled case (a, b), and for force controlled case (c, d) from DEM simulation and LS-DEM simulations with 30, 50 or 70 nodes

In order to solve this mesh-dependency problem and further show that LS-DEM converges to DEM with proper modification, two simple approaches are tested: regarding the contributions from all penetrating nodes, we either take average or only consider the one with maximum penetration:

$$\varvec{f}_{n} = \frac{1}{P}\sum _{z=1}^{P}\varvec{f}_{n,z}, \quad \varvec{f}_{t} = \frac{1}{P}\sum _{z=1}^{P}\varvec{f}_{t,z}$$
(18)

or

$$\begin{aligned} \varvec{f}_{n}&= \varvec{f}_{n,z_m}\left| d_{z_m}=\text {max}_{1\le z\le P}\left\{ d_{z}\right\} \right. , \nonumber \\ \varvec{f}_{t}&=\varvec{f}_{t,z_m}^{j,i}\left| d_{z_m}=\text {max}_{1\le z\le P}\left\{ d_{z}\right\} \right. \end{aligned}$$
(19)

As shown in Fig. 14, for displacement controlled loading condition, both approaches resolve the mesh-dependency problem but only the modification of considering maximum penetration can further make LS-DEM converge to DEM: the computed |F| and d from LS-DEM converge to those computed from DEM as the node number N discretizing a grain surface is increased from 30 to 70. We can expect that as N goes larger and larger, LS-DEM will converge to DEM for simulating circular particles with exactly the same model parameters.

Fig. 14
figure 14

Inter-particle force magnitude |F| and penetration d response for the same displacement controlled case from DEM simulation and LS-DEM simulations with 30, 50 or 70 nodes; a, b taking average for all penetrating nodes and c, d considering only the node with maximum penetration

Appendix 2: Boundary condition implemenation

Here we discuss our methodology in estimating the variation of \(|\varvec{F}_A|\) and \(|\varvec{F}_B|\) as \(\theta\) increases. We note first that all quantities mentioned here are experimentally measured. Following the discussion in Sect. 3 (Fig. 6), we assume the forces exerted by the particles and from \(F_N\) to the boundary “AD-DC-BC” all act at the center of each bar and the former can be estimated based on the stress state of the granular assembly \(\varvec{\sigma }_\theta\). In each configuration with a certain \(\theta\) value, we have the following unknown vectors: \(\varvec{F}_A\), \(\varvec{F}_B\) and \(\varvec{F}_h\), see Fig. 6. However, we only end up having three instead of six unknowns due to our experiment setup: \(\varvec{F}_A\) and \(\varvec{F}_B\) should always be perpendicular to AD and BC, and \(\varvec{F}_h\) should always be horizontal. We herein denote them as \(F_A\), \(F_B\) and \(F_h\) as the corresponding signed magnitude: if positive the force is along the assumed direction, otherwise opposite. With force and torque equilibrium we have three equations and can therefore solve for \(F_A\), \(F_B\) and \(F_h\). At a certain configuration with a given \(\theta\), we assume that:

$$\varvec{F}_A= F_A\begin{bmatrix} \text {cos}\theta&\text {sin}\theta \end{bmatrix},$$
(20)
$$\varvec{F}_B= F_B\begin{bmatrix} \text {cos}\theta&\text {sin}\theta \end{bmatrix},$$
(21)
$$\varvec{F}_h= F_h\begin{bmatrix} 1&0 \end{bmatrix}$$
(22)

Forces exerted by the particles can be estimated by:

$$\varvec{F}_{pq} = -\left( \varvec{\sigma }_\theta \cdot \varvec{n}_{pq}\right) S_{pq}$$
(23)

where “pq” is one of “ AD”, “DC” and “BC” and \(S_{pq}\) is the corresponding arm area. By force and torque equilibrium we must have:

$$\sum _l \varvec{F}_l= \varvec{0}$$
(24)
$$\sum _l \varvec{r}_{lM}\times \varvec{F}_l= \varvec{0}$$
(25)

where \(\varvec{F}_l\) stands for all external force exerted to “AD-DC-CB” with \(\varvec{r}_{lM}\) being the position vector point from point M (center of bar “DC”) to the location of \(\varvec{F}_l\). Combining the above equations and after some algebra we arrive at the following linear system:

$$\varvec{A}\varvec{u} = \varvec{b}$$
(26)

where

$$\begin{aligned} \varvec{A}&= \begin{bmatrix} \text {cos}\theta&\text {cos}\theta&1\\ \text {sin}\theta&\text {sin}\theta&0\\ A_{31}&A_{32}&0 \end{bmatrix},\,\, \varvec{u} = \begin{bmatrix} F_A\\ F_B\\ F_h \end{bmatrix}\,\, \text {and}\nonumber \\ \varvec{b}&= \begin{bmatrix} \tau _\theta S_{DC} \\ \sigma _{y,\theta }S_{DC}+F_N\\ b_3 \end{bmatrix} \end{aligned}$$
(27)

with

$$\begin{aligned} A_{31}&= \frac{1}{2}\text {cos}\theta \left( -\,2h_\theta \text {sec}^2\theta -\varvec{r}_{A2}+\varvec{r}_{B2}\right. \nonumber \\&\quad \left. +\,\text {tan}\theta (\varvec{r}_{A1}-\varvec{r}_{B1})\right) \end{aligned}$$
(28)
$$\begin{aligned} A_{32}&= \frac{1}{2}\text {cos}\theta \left( -\,2h_\theta \text {sec}^2\theta + \varvec{r}_{A2}-\varvec{r}_{B2}\right. \nonumber \\&\quad \left. +\,\text {tan}\theta (\varvec{r}_{B1}-\varvec{r}_{A1})\right) \end{aligned}$$
(29)
$$\begin{aligned} b_3&= S_{DC}\left[ (\varvec{r}_{A1}-\varvec{r}_{B1})\text {sin}\theta \sigma _{y,\theta } +\tau _\theta (\text {cos}\theta +\text {sin}\theta )\right. \nonumber \\&\quad \left. -\,(\varvec{r}_{A2}-\varvec{r}_{B2})\text {cos}\theta \sigma _{x,\theta }\right] \end{aligned}$$
(30)

where \(\varvec{r}_{A}\) and \(\varvec{r}_{B}\) are locations of the slider A and B which both remain unchanged through the experiment with the subscripts “1” and “2” denote the x and y component respectively. Solving the above linear system can give us the estimation of \(F_A\) and \(F_B\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Marteau, E. & Andrade, J.E. Capturing the inter-particle force distribution in granular material using LS-DEM. Granular Matter 21, 43 (2019). https://doi.org/10.1007/s10035-019-0893-7

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-019-0893-7

Keywords

Navigation