Skip to main content
Log in

Granular element method (GEM): linking inter-particle forces with macroscopic loading

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

We present a new method capable of inferring, for the first time, inter-particle contact forces in irregularly-shaped natural granular materials (e.g., sands), using basic Newtonian mechanics and balance of linear momentum at the particle level. The method furnishes a relationship between inter-particle forces and corresponding average particle stresses, which can be inferred, for instance, from measurements of average particle strains emanating from advanced experimental techniques (e.g., 3D X-ray diffraction). Inter-particle forces are the missing link in understanding how forces are transmitted in complex granular structures and the key to developing physics-based constitutive models. We present two numerical examples to verify the method and showcase its promise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrade J.E., Borja R.I.: Capturing strain localization in dense sands with random density. Int. J. Numer. Methods Eng. 67, 1531–1564 (2006)

    Article  MATH  Google Scholar 

  2. Andrade J.E., Ellison K.C.: Evaluation of a predictive constitutive model for sands. J. Geotech. Geoenviron. Eng. 134, 1825–1828 (2008)

    Article  Google Scholar 

  3. Dafalias Y.F., Popov E.P.: A model of nonlinearly hardening materials for complex loadings. Acta Mech. 21, 173–192 (1975)

    Article  MATH  Google Scholar 

  4. Grueschow E., Rudnicki J.W.: Elliptic yield cap constitutive modeling for high porosity sandstone. Int. J. Solids Struct. 42(16–17), 4574–4587 (2005)

    Article  MATH  Google Scholar 

  5. Manzari M.T., Dafalias Y.F.: A critical state two-surface plasticity model for sands. Géotechnique 43, 255–272 (1997)

    Article  Google Scholar 

  6. DiMaggio F.L., Sandler I.S.: Material model for granular soils. J. Eng. Mech. Div. ASCE 97, 935–950 (1971)

    Google Scholar 

  7. Bažant Z.P., Caner F.C., Carol I., Adley M.D., Akers S.A.: Microplane model M4 for concrete. I: formulation with work-conjugate deviatoric stress. J. Eng. Mech. 126, 944–953 (2000)

    Article  Google Scholar 

  8. Schofield A., Wroth P.: Critical State Soil Mechanics. McGraw-Hill, New York (1968)

    Google Scholar 

  9. Cundall P.A., Strack O.D.L.: A discrete numerical model for granular assemblies. Géotechnique 29, 47–65 (1979)

    Article  Google Scholar 

  10. Bardet J.P., Proubet J.: Adaptive dynamic relaxation for statics of granular materials. Comput. Struct. 39, 221–229 (1991)

    Article  Google Scholar 

  11. Rothenburg L., Bathurst R.J.: Analytical study of induced anisotropy in idealized granular materials. Géotechnique 39, 601–614 (1989)

    Article  Google Scholar 

  12. Jensen R.P., Bosscher P.J., Plesha M.E., Edil T.B.: DEM simulation of granular media—structure interface: effect of surface roughness and particle shape. Int. J. Numer. Anal. Methods Geomech. 23, 531–547 (1999)

    Article  MATH  Google Scholar 

  13. Tu X., Andrade J.E.: Criteria for static equilibrium in particulate mechanics computations. Int. J. Numer. Methods Eng. 75, 1581–1606 (2008)

    Article  MATH  Google Scholar 

  14. Oda M., Takemura T., Takahashi M.: Microstructure in shear band observed by microfocus X-ray computed tomography. Géotechnique 54, 539–542 (2004)

    Article  Google Scholar 

  15. Alshibli K.A., Sture S., Costes N.C., Frank M.L., Lankton F.R., Batiste S.N., Swanson R.A.: Assessment of localized deformations in sand using X-ray computed tomography. Geotech. Test. J. ASCE 23, 274–299 (2000)

    Article  Google Scholar 

  16. Ketcham R.A., Carlson W.D.: Acquisition, optimization and interpretation of X-ray computed tomographic imagery: applications to the geosciences. Comput. Geosci. 27, 381–400 (2001)

    Article  ADS  Google Scholar 

  17. Wang L., Park J.Y., Fu Y.: Representation of real particles for DEM simulation using X-ray tomography. Constr. Build. Mater. 21, 338–346 (2005)

    Article  Google Scholar 

  18. Poulsen H.F.: Three-Dimensional X-Ray Diffraction Microscopy: Mapping Polycristals and their Dynamics. Springer, New York (2004)

    Book  Google Scholar 

  19. Hall S.A., Bornert M., Desrues J., Pannier Y., Lenoir N., Viggiani G., Bésuelle P.: Discrete and continuum analysis of localized deformation in sand using X-ray micro CT and volumetric digital image correlation. Géotechnique 60, 315–322 (2010)

    Article  Google Scholar 

  20. Andrade J.E., Avila C.F., Lenoir N., Hall S.A., Viggiani G.: Multiscale modeling and characterization of granular matter: from grain scale kinematics to continuum mechanics. J. Mech. Phys. Solids 59, 237–250 (2011)

    Article  ADS  Google Scholar 

  21. Martins R.V., Margulies L., Schmidt S., Poulsen H.F., Leffers T.: Simultaneous measurement of the strain tensor of 10 individual grains embedded in an Al tensile sample. Mater. Sci. Eng. A 387(389), 84–88 (2004)

    Google Scholar 

  22. Hall, S.A., Wright, J., Pirling, T., Andò, E., Hughes, D.J., Viggiani, G.: Can intergranular force transmission be identified in sand? Granul. Matter (2011). doi:10.1007/s10035-011-0251-x

  23. Christoffersen J., Mehrabadi M.M., Nemat-Nasser S.: A micromechanical description of granular material behavior. J. Appl. Mech. 48, 339–344 (1981)

    Article  ADS  MATH  Google Scholar 

  24. Drescher A., de Josselin de Jong G.: Photoelastic verification of a mechanical model for the flow of a granular material. J. Mech. Phys. Solids 20, 337–340 (1972)

    Article  ADS  Google Scholar 

  25. Majmudar T.S., Behringer R.P.: Contact force measurements and stress-induced anisotropy in granular materials. Nature 435, 1079–1082 (2005)

    Article  ADS  Google Scholar 

  26. Frocht M.M.: Photoelasticity, vol. 1. Wiley, New York (1941)

    Google Scholar 

  27. Frocht M.M.: Photoelasticity, vol. 2. Wiley, New York (1941)

    Google Scholar 

  28. Pellegrino S.: Structural computations with the singular value decomposition of the equilibrium matrix. Int. J. Solids Struct. 30, 3025–3035 (1993)

    Article  MATH  Google Scholar 

  29. Holzapfel G.A.: Nonlinear Solid Mechanics. Wiley, West Sussex (2000)

    MATH  Google Scholar 

  30. Peña A.A., Lind P.G., Herrmann H.J.: Modeling slow deformation of polygonal particles using dem. Particuology 6, 506–514 (2008)

    Article  Google Scholar 

  31. Hughes T.J.R.: The Finite Element Method. Prentice-Hall, Englewood Cliffs (1987)

    MATH  Google Scholar 

  32. Strang G.: Linear Algebra and Its Applications. 3rd edn. Thomson Learning, London (1988)

    Google Scholar 

  33. Belytschko T., Liu W.K., Moran B.: Nonlinear Finite Elements for Continua and Structures. Wiley, West Sussex (2000)

    MATH  Google Scholar 

  34. Bardet J.P., Vardoulakis I.: The asymmetry of stress in granular media. Int. J. Solids Struct. 38, 353–367 (2001)

    Article  MATH  Google Scholar 

  35. Peters J.F., Muthuswasmy M., Wibowo J., Tordesillas A.: Characterization of force chains in granular material. Phys. Rev. E 72, 041397 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José E. Andrade.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrade, J.E., Avila, C.F. Granular element method (GEM): linking inter-particle forces with macroscopic loading. Granular Matter 14, 51–61 (2012). https://doi.org/10.1007/s10035-011-0298-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-011-0298-8

Keywords

Navigation