Skip to main content
Log in

Rectification effect on solitary waves in the symmetric Y-shaped granular chain

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The rectification effect on the propagation of solitary waves in the symmetric Y-shaped granular chain is numerically investigated. A heterojunction with mass mismatch occurs at the position of Y-junction by adjusting the branch angle. And the heavy-light heterojunction is more favorable for the solitary wave passing. Based on the characteristics of wave propagation velocity and gap’s opening, we argue that both nonlinearity and collision effects dominate the rectification process. The rectification efficiency can be improved by adjusting the branch angle and the direction of incident solitary wave. The results have particularly practical significance for the potential design of acoustic diode devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tongay, S., Lemaitre, M., Miao, X., Gila, B., Appleton, B.R., Hebard, A.F.: Rectification at graphene-semiconductor interfaces zero-gap semiconductor-based diodes. Phys. Rev. X 2, 011002 (2012)

    Google Scholar 

  2. Zietek, A., Ogrodnik, P., Skowroński, W., Sobiecki, F., Van Dijken, S., Stobiecki, T.: Electric-field tunable spin diode FMR in patterned PMN-PT/NiFe structures. Appl. Phys. Lett. 109, 072406 (2012)

    Article  ADS  Google Scholar 

  3. Lepri, S., Livi, R., Politi, A.: Thermal conduction in classical low-dimensional lattices. Phys. Rep. 377, 1 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  4. Zhu, X.F., Liang, B., Kan, W.W., Zou, X.X., Cheng, J.C.: Acoustic cloaking by a superlens with single-negative materials. Phys. Rev. Lett. 106, 014301 (2011)

    Article  ADS  Google Scholar 

  5. Breindel, A., Sun, D., Sen, S.: Impulse absorption using small, hard panels of embedded cylinders with granular alignments. Appl. Phys. Lett. 99, 063510 (2011)

    Article  ADS  Google Scholar 

  6. Ma, L., Huang, D.C., Chen, W.Z., Jiao, T.F., Sun, M., Hu, F.L., Su, J.Y.: Oscillating collision of the granular chain on static wall. Phys. Lett. A 381, 542 (2017)

    Article  ADS  Google Scholar 

  7. Przedborski, M.A., Sen, S.: Localizing energy in granular materials. Appl. Phys. Lett. 107, 244105 (2015)

    Article  ADS  Google Scholar 

  8. Nesterenko, V.F., Daraio, C., Herbold, E.B., Jin, S.: Anomalous wave reflection at the interface of two strongly nonlinear granular media. Phys. Rev. Lett. 95, 158702 (2005)

    Article  ADS  Google Scholar 

  9. Vergara, L.: Scattering of solitary waves from interfaces in granular media. Phys. Rev. Lett. 95, 108002 (2005)

    Article  ADS  Google Scholar 

  10. Li, F., Anzel, P., Yang, J., Kevrekidis, P.G., Daraio, C.: Granular acoustic switches and logic elements. Nat. Commun. 5, 5311 (2014)

    Article  ADS  Google Scholar 

  11. Daraio, C., Nesterenko, V.F., Herbold, E.B., Jin, S.: Energy trapping and shock disintegration in a composite granular medium. Phys. Rev. Lett 96, 058002 (2006)

    Article  ADS  Google Scholar 

  12. Kim, E., Restuccia, F., Yang, J., Daraio, C.: Solitary wave-based delamination detection in composite plates using a combined granular crystal sensor and actuator. Smart Mater. Struct. 24, 125004 (2015)

    Article  ADS  Google Scholar 

  13. Hasan, M.A., Nemat-Nasser, S.: Universal relations for solitary waves in granular crystals under shocks with finite rise and decay times. Phys. Rev. E. 93, 042905 (2016)

    Article  ADS  Google Scholar 

  14. Nesterenko, V.F.: Propagation of nonlinear compression pulses in granular media. J. Appl. Mech. Tech. Phys. 24, 733 (1984)

    Article  ADS  Google Scholar 

  15. Nesterenko, V.F.: Dynamics of Heterogeneous Materials. Springer, New York (2001)

    Book  Google Scholar 

  16. Sen, S., Hong, J., Bang, J., Avalos, E., Doney, R.: Solitary waves in the granular chain. Phys. Rep. 462, 21 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  17. Lazaridi, A.N., Nesterenko, V.F.: Observation of a new type of solitary waves in a one-dimensional granular medium. J. Appl. Mech. Tech. Phys. 26, 405 (1985)

    Article  ADS  Google Scholar 

  18. Coste, C., Falcon, E., Fauve, S.: Solitary waves in a chain of beads under Hertz contact. Phys. Rev. E 56, 6104 (1997)

    Article  ADS  Google Scholar 

  19. Sen, S., Manciu, M.: Solitary wave dynamics in generalized Hertz chains an improved solution of the equation of motion. Phys. Rev. E 64, 056605 (2001)

    Article  ADS  Google Scholar 

  20. Rosas, A., Lindenberg, K.: Pulse velocity in a granular chain. Phys. Rev. E 69, 037601 (2004)

    Article  ADS  Google Scholar 

  21. Boechler, N., Theocharis, G., Daraio, C.: Bifurcation-based acoustic switching and rectification. Nat. Mater. 10, 665 (2011)

    Article  ADS  Google Scholar 

  22. Nesterenko, V.F., Lazaridi, A.N., Sibiryakov, E.B.: The decay of soliton at the contact of two “acoustic vacuums”. J. Appl. Mech. Tech. Phys. 36, 166 (1995)

    Article  ADS  Google Scholar 

  23. Lawney, B.P., Luding, S.: Frequency filtering in disordered granular chains. Acta Mech. 225, 2385 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Vainchtein, A., Starosvetsky, Y., Wright, J.D., Perline, R.: Solitary waves in diatomic chains. Phys. Rev. E 93, 042210 (2016)

    Article  ADS  Google Scholar 

  25. Doney, R., Sen, S.: Decorated, tapered, and highly nonlinear granular chain. Phys. Rev. Lett. 97, 155502 (2006)

    Article  ADS  Google Scholar 

  26. Manjunath, M., Awasthi, A.P., Geubelle, P.H.: Wave propagation in random granular chains. Phys. Rev. E 85, 031308 (2012)

    Article  ADS  Google Scholar 

  27. Mouraille, O., Luding, S.: Sound wave propagation in weakly polydisperse granular materials. Ultrasonics 48, 498 (2008)

    Article  Google Scholar 

  28. Zhang, Y., Hasan, M.A., Starosvetsky, Y., McFarland, D.M., Vakakis, A.F.: Nonlinear mixed solitary-shear waves and pulse equi-partition in a granular network. Phys. D. 291, 45 (2015)

    Article  Google Scholar 

  29. Shrivastava, R.K., Luding, S.: Effect of disorder on bulk sound wave speed: a multiscale spectral analysis. NPGD 10, 5194 (2017)

    Google Scholar 

  30. Falls, W.J., Sen, S.: Solitary wave propagation through two-dimensional treelike structures. Phys. Rev. E 89, 023209 (2014)

    Article  ADS  Google Scholar 

  31. Spadoni, A., Daraio, C.: Generation and control of sound bullets. Proc. Natl Acad. Sci. USA 107, 7230 (2014)

    Article  ADS  Google Scholar 

  32. Daraio, C., Ng, D., Nesterenko, V.F., Fraternali, F.: Highly nonlinear pulse splitting and recombination in a two dimensional granular network. Phys. Rev. E 82, 036603 (2010)

    Article  ADS  Google Scholar 

  33. Ngo, D., Fraternali, F., Daraio, C.: Highly nonlinear solitary wave propagation in Y-shaped granular crystals with variable branch angles. Phys. Rev. E 85, 036602 (2012)

    Article  ADS  Google Scholar 

  34. Leonard, A., Ponson, L., Daraio, C.: Wave mitigation in ordered networks of granular chains. J. Mech. Phys. Solids 73, 103 (2014)

    Article  ADS  Google Scholar 

  35. Huang, D.C., Sun, G., Lu, K.Q.: Relationship between the flow rate and the packing fraction in the choke area of the two-dimensional granular flow. Phys. Rev. E 74, 061306 (2006)

    Article  ADS  Google Scholar 

  36. Huang, D.C., Lu, M., Sen, S., Sun, M., Feng, Y.D., Yang, A.N.: Spin Brazil-nut effect and its reverse in a rotating double-walled drum. Eur. Phys. J. E 36, 41 (2013)

    Article  Google Scholar 

  37. Kuwabara, G., Kono, K.: Restitution coefficient in a collision between two spheres. Japn. J. Appl. Phys. 26, 1230 (1987)

    Article  ADS  Google Scholar 

  38. Schäfer, J., Dippel, S., Wolf, D.E.: Force schemes in simulations of granular materials. J. Phys. I 6, 5 (1996)

    Google Scholar 

  39. Herbold, E.B., Nesterenko, V.F.: Solitary and shock waves in discrete strongly nonlinear double power-law materials. Appl. Phys. Lett. 90, 261902 (2007)

    Article  ADS  Google Scholar 

  40. Job, S., Melo, F., Sokolow, A., Sen, S.: How Hertzian solitary waves interact with boundaries in a 1D granular medium. Phys. Rev. Lett. 94, 178002 (2005)

    Article  ADS  Google Scholar 

  41. Tichler, A.M., Gómez, L.R., Upadhyaya, N., Campman, X., Nesterenko, V.F., Vitelli, V.: Transmission and reflection of strongly nonlinear solitary waves at granular interfaces. Phys. Rev. Lett. 111, 048001 (2013)

    Article  ADS  Google Scholar 

  42. Sokolow, A., Bittle, E.G., Sen, S.: Solitary wave train formation in Hertzian chains. Europhys. Lett. 77, 24002 (2007)

    Article  ADS  Google Scholar 

  43. Job, S., Melo, F., Sokolow, A., Sen, S.: Solitary wave trains in granular chains. Granul. Matt. 10, 13 (2007)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (Grant Nos. 11574153, 21574066, 11574150, 11334005, 11572178, 91634202) and Jiangsu Province Postdoctoral Science Foundation (Grant No. 1402007C).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Decai Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (wmv 5353 KB)

Supplementary material 2 (wmv 4982 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Jiao, T., Ma, L. et al. Rectification effect on solitary waves in the symmetric Y-shaped granular chain. Granular Matter 19, 55 (2017). https://doi.org/10.1007/s10035-017-0739-0

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-017-0739-0

Keywords

Navigation