Skip to main content
Log in

Nonreciprocal Head-on Collision Between Two Nonlinear Solitary Waves in Granular Metamaterials with an Interface

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

In this work, the head-on collision and transmission with nonreciprocal properties of opposite propagating solitary waves are studied, in which the interface between different granular chains is considered. Due to the discontinuity of two periodic granular systems, the transmitted and reflected solitary waves are produced. The head-on collision appears at the interface and the reductive perturbation method is applied to derive the generated solitary waves. According to the derivation and numerical simulation, we can find that the transmitted and reflected solitary waves can propagate with the same speed when they locate at the same chain. Moreover, the influences of both the arrangement and prestress are discussed. It is found that the amplitude and velocity of solitary waves become larger because of a bigger prestress, which result in the nonreciprocal collision and transmission in the granular mechanical metamaterials. This study is expected to be helpful for the design and application of elastic wave metamaterials and mechanical diodes with nonlinear solitary waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhu R, Liu XN, Huang GL. Study of anomalous wave propagation and reflection in semi-infinite elastic metamaterials. Wave Motion. 2015;55:73–83.

    MathSciNet  MATH  Google Scholar 

  2. Bilal OR, Foehr A, Daraio C. Bistable metamaterial for switching and cascading elastic vibrations. Proc Natl Acad Sci. 2017;114:4603–6.

    Google Scholar 

  3. Guo DK, Chang Z, Hu GK. In-plane semi-linear cloaks with arbitrary shape. Acta Mech Solida Sinica. 2019;32:277–86.

    Google Scholar 

  4. Zhao PC, Zhang K, Deng ZC. Elastic wave propagation in lattice metamaterials with Koch fractal. Acta Mech Solida Sinica 33:600–611.

  5. Lin QD, Zhou JX, Pan HB, Xu DL, Wen GL. Numerical and experimental investigations on tunable low-frequency locally resonant metamaterials. Acta Mech Solida Sinica. 2021. https://doi.org/10.1007/s10338-021-00220-4.

    Article  Google Scholar 

  6. Huang YL, Huang Y, Chen WQ, Bao RH. Flexible manipulation of topologically protected waves in one-dimensional soft periodic plates. Int J Mech Sci. 2020;170: 105348.

  7. Getz R, Shmuel G. Band gap tunability in deformable dielectric composite plates. Int J Solids Struct. 2017;128:11–22.

    Google Scholar 

  8. Fu CY, Wang BH, Zhao TF, Chen CQ. High efficiency and broadband acoustic diodes. Appl Phys Lett. 2018;112: 051902.

  9. Jandron M, Henann D. A numerical simulation capability for electro elastic wave propagation in dielectric elastomer composites: application to tunable soft phononic crystals. Int J Solids Struct. 2018;150:1–21.

    Google Scholar 

  10. Xu XC, Barnhart MV, Fang X, Wen JH, Chen YY, Huang GL. A nonlinear dissipative elastic metamaterial for broadband wave mitigation. Int J Mech Sci. 2019;164:105195.

    Google Scholar 

  11. Yi J, Negahban M, Li Z, Su X, Xia R. Conditionally extraordinary transmission in periodic parity-time symmetric phononic crystals. Int J Mech Sci. 2019;163:105134.

    Google Scholar 

  12. Parnell WJ, Shearer T. Antiplane elastic wave cloaking using metamaterials, homogenization and hyperelasticity. Wave Motion. 2013;50:1140–52.

    MathSciNet  MATH  Google Scholar 

  13. Sklan SR, Pak RYS, Li BW. Seismic invisibility: elastic wave cloaking via symmetrized transformation media. New J Phys. 2018;20:063013.

    Google Scholar 

  14. Grinberg I, Vakakis AF, Gendelman OV. Acoustic diode: Wave non-reciprocity in nonlinearly coupled waveguides. Wave Motion. 2018;83:49–66.

    MathSciNet  MATH  Google Scholar 

  15. Lepri S, Malomed BA. Symmetry breaking and restoring wave transmission in diode-antidiode double chains. Phys Rev E. 2013;87:042903.

    Google Scholar 

  16. Lee JU. Band-gap renormalization in carbon nanotubes: Origin of the ideal diode behavior in carbon nanotube p-n structures. Phys Rev B. 2007;75:075409.

    Google Scholar 

  17. Watanabe K, Hata T, Koyama K, Kurosawa H. Wave focusing by a spherical concave transducer. Wave Motion. 1994;20:1–12.

  18. Tol S, Degertekin FL, Erturk A. Phononic crystal Luneburg lens for omnidirectional elastic wave focusing and energy harvesting. Appl Phys Lett. 2017;111:013503.

    Google Scholar 

  19. Wang YZ, Wang YS. Active control of elastic wave propagation in nonlinear phononic crystals consisting of diatomic lattice chain. Wave Motion. 2018;78:1–8.

    MathSciNet  MATH  Google Scholar 

  20. Daraio C, Nesterenko VF, Herbold EB, Jin S. Tunability of solitary wave properties in one-dimensional strongly nonlinear phononic crystals. Phys Rev E. 2006;73:026610.

    Google Scholar 

  21. Wang XF, Zhu WD. A new spatial and temporal harmonic balance method for obtaining periodic steady-state responses of a one-dimensional second-order continuous system. ASME J Appl Mech. 2017;84:014501.

    Google Scholar 

  22. Liang XQ, Gao Q, Yao WA. An efficient method for the dynamic responses of periodic structures based on the physical features of the structure and group theory. Int J Mech Sci. 2018;141:461–78.

    Google Scholar 

  23. Wallen SP, Boechler N. Shear to longitudinal mode conversion via second harmonic generation in a two-dimensional microscale granular crystal. Wave Motion. 2017;68:22–30.

    MathSciNet  MATH  Google Scholar 

  24. Boechler N, Theocharis G, Job S, Kevrekidis PG, Porter MA, Daraio C. Discrete breathers in one-dimensional diatomic granular crystals. Phys Rev Lett. 2010;24:244302.

    Google Scholar 

  25. Theocharis G, Boechler N, Kevrekidis PG, Job S, Porter MA, Daraio C. Intrinsic energy localization through discrete gap breathers in one-dimensional diatomic granular crystals. Phys Rev E. 2010;82:056604.

    Google Scholar 

  26. Nikolic SN, Ashour OA, Aleksic NB, Belic MR, Chin SA. Breathers, solitons and rogue waves of the quintic nonlinear Schrödinger equation on various backgrounds. Nonlinear Dyn. 2019;95:2855–65.

    MATH  Google Scholar 

  27. Liu ZG, Wang YS, Huang GL. Solitary waves in a granular chain of elastic spheres: multiple solitary solutions and their stabilities. Phys Rev E. 2019;99:062904.

    MathSciNet  Google Scholar 

  28. Luo BB, Gao S, Liu JH. Non-reciprocal wave propagation in one-dimensional nonlinear periodic structures. AIP Adv. 2018;8:015113.

    Google Scholar 

  29. Li ZN, Wang YZ, Wang YS. Nonreciprocal phenomenon in nonlinear elastic wave metamaterials with continuous properties. Int J Solids Struct. 2018;150:125–34.

    Google Scholar 

  30. Moore KJ, Bunyan J, Tawfick S, Gendelman OV, Li SB, Leamy M, Vakakis AF. Nonreciprocity in the dynamics of coupled oscillators with nonlinearity, asymmetry, and scale hierarchy. Phys Rev E. 2018;97:012219.

    Google Scholar 

  31. Moore KJ, Vakakis AF. Wave non-reciprocity at a nonlinear structural interface. Acta Mech. 2018;229:4057–70.

    MathSciNet  Google Scholar 

  32. Deng BL, Wang P, He Q, Tournat V, Bertoldi K. Metamaterials with amplitude gaps for elastic solitons. Nat Commun. 2018;9:3410.

    Google Scholar 

  33. Liang B, Yuan B, Cheng JC. Acoustic diode: rectification of acoustic energy flux in one-dimensional systems. Phys Rev Lett. 2009;103:104301.

    Google Scholar 

  34. Chen YY, Li XP, Nassar H, Norris AN, Daraio C, Huang GL. Nonreciprocal wave propagation in a continuum-based metamaterial with space-time modulated resonators. Phys Rev Appl. 2019;11:064052.

    Google Scholar 

  35. Remoissenet M. Waves called solitons: concepts and experiments. Am J Phys. 1996;36:381–2.

    MathSciNet  MATH  Google Scholar 

  36. Jayaprakash KR, Vakakis AF, Starosvetsky Y. Strongly nonlinear traveling waves in granular dimer chains. Mech Syst Signal Process. 2013;39:91–107.

    Google Scholar 

  37. Burgoyne HA, Daraio C. Elastic-plastic wave propagation in uniform and periodic granular chains. ASME J Appl Mech. 2015;82:081002.

    Google Scholar 

  38. Smith E, Ferri A. Shock isolation in finite-length dimer chains with linear, cubic, and Hertzian spring interactions. ASME J Vib Acoustics. 2016;138:011012.

    Google Scholar 

  39. Nesterenko VF. Propagation of nonlinear compression pulses in granular media. J Appl Mech Tech Phys. 1983;24:733–43.

    Google Scholar 

  40. Lazaridi AN, Nesterenko VF. Observation of a new type of solitary waves in a one-dimensional granular medium. J Appl Mech Tech Phys. 1985;26:405–8.

    Google Scholar 

  41. Nesterenko VF, Lazaridi AN, Sibiryakov EB. The decay of soliton at the contact of two “acoustic vacuums”. J Appl Mech Tech Phys. 1995;36:166–8.

  42. Wang FG, Yang YY, Han JF, Duan WS. Head-on collision between two solitary waves in a one-dimensional bead chain. Chin Phys B. 2018;27:044051.

    Google Scholar 

  43. Li KY, Rizzo P. Nonreciprocal propagation of solitary waves in granular chains with asymmetric potential barriers. J Sound Vib. 2015;365:15–21.

    Google Scholar 

  44. Shen Y, Kevrekidis PG, Sen S, Hoffman A. Characterizing traveling-wave collisions in granular chains starting from integrable limits: the case of the Korteweg-de Vries equation and the Toda lattice. Physi Rev E. 2014;90:022905.

    Google Scholar 

  45. Deng B, Tournat V, Wang P, Bertoldi K. Anomalous collisions of elastic vector solitons in mechanical metamaterials. Phys Rev Lett. 2019;122:044101.

    Google Scholar 

  46. Ozden AE, Demiray H. On head-on collision between two solitary waves in shallow water: the use of the extended PLK method. Nonlinear Dyn. 2015;82:73–84.

    MathSciNet  MATH  Google Scholar 

  47. Nesterenko VF. Dynamics of heterogeneous materials. New York: Spring; 2001.

    Google Scholar 

  48. Sokolow A, Bittle EG, Sen S. Solitary wave train formation in Hertzian chains. Europhys Lett Assoc. 2007;77:24002.

    Google Scholar 

  49. Li F, Chong C, Yang J, Kevrekidis PG, Daraio C. Wave transmission in time- and space-variant helicoidal phononic crystals. Phys Rev E. 2014;90:053201.

    Google Scholar 

  50. Chong C, Porter MA, Kevrekidis PG, Daraio C. Nonlinear coherent structures in granular crystals. J Phys-Condensed Matter. 2017;29:413003.

    Google Scholar 

  51. Chaunsali R, Xu H, Yang J, Kevrekidis PG. Linear and nonlinear dynamics of isospectral granular chains. J Phys A Math Theor. 2017;50:175201.

    MathSciNet  MATH  Google Scholar 

  52. Yang J, Hutchins DA, Akanji O, Thomas PJ, Davis LAJ, Harput S, Gelat P, Freear S, Saffari N. Analysis of solitary wave impulses in granular chains using ultrasonic excitation. Phys Rev E. 2016;93:063002.

    Google Scholar 

  53. Takato Y, Sen S. Long-lived solitary wave in a precompressed granular chain. Europhys Lett. 2012;100:24003.

    Google Scholar 

  54. Taniuti T, Wei CC. Reductive perturbation method in nonlinear wave propagation. I. J Phys Soc Jpn 1968;24, 941.

  55. Kakutani T, Ono H, Taniuti T, Wei CC. Reductive perturbation method in nonlinear wave propagation II. application to hydromagnetic waves in cold plasma. J Phys Soc Jpn. 1968;24:1159–66.

  56. Su CH, Mirie RM. On head-on collisions between two solitary waves. J Fluid Mech. 1980;98:509–25.

    MathSciNet  MATH  Google Scholar 

  57. Huang GX, Velarde MG. Head-on collision of two concentric cylindrical ion acoustic solitary waves. Phys Rev E. 1996;53:2988–91.

    Google Scholar 

  58. Zhang H, Yang Y, Zhang J, Hong XR, Lin MM, Yang L, Qi X, Duan WS. Landau damping in a multi-component dusty plasma. Phys Plasmas. 2014;21:113706.

    Google Scholar 

  59. Yang YY, Liu SW, Yang Q, Zhang ZB, Duan WS, Yang L. Solitary waves propagation described by Korteweg-de Vries equation in the granular chain with initial prestress. AIP Adv. 2016;6:075317.

    Google Scholar 

  60. Liu SW, Yang YY, Duan WS, Yang L. Pulse reflection and transmission due to impurities in a granular chain. Phys Rev E. 2015;92:013202.

    Google Scholar 

  61. Porter MA, Daraio C, Szelengowicz I, Herbold EB, Kevrekidis PG. Highly nonlinear solitary waves in heterogeneous periodic granular media. Phys D-Nonlinear Phenomena. 2009;238:666–76.

    MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to express gratitude for the supports provided by the National Natural Science Foundation of China (Grant Nos. 11922209, 11991031 and 12021002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Ze Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Q., Wang, YZ. Nonreciprocal Head-on Collision Between Two Nonlinear Solitary Waves in Granular Metamaterials with an Interface. Acta Mech. Solida Sin. 35, 139–151 (2022). https://doi.org/10.1007/s10338-021-00246-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-021-00246-8

Keywords

Navigation