Skip to main content

Advertisement

Log in

Increased use of surgical energy promotes methicillin-resistant Staphylococcus aureus colonization in rabbits following open ventral hernia mesh repair

  • Published:
Surgical Endoscopy Aims and scope Submit manuscript

Abstract

Background

Surgical energy has been widely implemented because of ease of use, effective hemostasis, and surgical dissection. Studies demonstrate its use to be an independent risk factor for postoperative wound infection. Methicillin-resistant Staphylococcus aureus (MRSA) is the most common bacteria found in postoperative mesh infection. No reports are available on the sequelae of surgical energy use for open ventral hernia repair (oVHR) with mesh. We hypothesized that increasing amounts of surgical energy will result in higher infectious burden after oVHR with composite multifilament polyester mesh (Parietex™ PCO).

Methods

New Zealand rabbits underwent bridging oVHR with Parietex™ PCO and were divided into three surgical treatment groups: (1) scalpel alone, (2) 120 J of energy, and (3) 600 J of energy. The bioprosthesis was then inoculated with 105 colony-forming units of MRSA. Rabbits were survived for 7 days with daily physical examination. Complete blood count, basci metabolic panel, and blood cultures were performed on postoperative days one, four, and seven. Surviving rabbits were killed, and meshes explanted for MRSA colony counts.

Results

Rabbits receiving the most surgical energy developed signs and symptoms of severe sepsis and wound necrosis within 24 h. In comparison, rabbits receiving no surgical energy had significantly less MRSA recovered from explanted mesh, significantly less bacteremia, and fewer adhesions.

Conclusions

Increased use of surgical energy promoted greater colonization, exaggerated septic response to bacterial contamination, and more severe adhesions. In the absence of devitalized tissue, rabbits can effectively limit bacterial contamination. These findings support the surgical principles of proper tissue handling and highlight the detrimental effects of indiscriminant surgical energy usage, thus emphasizing the importance of programs such as Fundamental Use of Surgical Energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Shamim M (2009) Diathermy vs. scalpel skin incisions in general surgery: double-blind, randomized, clinical trial. World J Surg 33(8):1594–1599. doi:10.1007/s00268-009-0064-9

    Article  PubMed  Google Scholar 

  2. Kearns SR, Connolly EM, McNally S, McNamara DA, Deasy J (2001) Randomized clinical trial of diathermy versus scalpel incision in elective midline laparotomy. Br J Surg 88(1):41–44. doi:10.1046/j.1365-2168.2001.01625.x

    Article  CAS  PubMed  Google Scholar 

  3. Chrysos E, Athanasakis E, Antonakakis S, Xynos E, Zoras O (2005) A prospective study comparing diathermy and scalpel incisions in tension-free inguinal hernioplasty. Am Surg 71(4):326–329

    PubMed  Google Scholar 

  4. Madani A, Jones DB, Fuchshuber P, Robinson TN, Feldman LS (2014) Fundamental Use of Surgical Energy (FUSE): a curriculum on surgical energy-based devices. Surg Endosc 28(9):2509–2512. doi:10.1007/s00464-014-3623-6

    Article  PubMed  Google Scholar 

  5. Massarweh NN, Cosgriff N, Slakey DP (2006) Electrosurgery: history, principles, and current and future uses. J Am Coll Surg 202(3):520–530. doi:10.1016/j.jamcollsurg.2005.11.017

    Article  PubMed  Google Scholar 

  6. Feldman LS, Brunt LM, Fuchshuber P, Jones DB, Jones SB, Mischna J, Munro MG, Rozner MA, Schwaitzberg SD, Committee SF (2013) Rationale for the Fundamental Use of Surgical Energy™(FUSE) curriculum assessment: focus on safety. Surg Endosc 27(11):4054–4059

    Article  PubMed  Google Scholar 

  7. Charoenkwan K, Chotirosniramit N, Rerkasem K (2012) Scalpel versus electrosurgery for abdominal incisions. Cochrane Database Syst Rev 6:CD005987. doi:10.1002/14651858.CD005987.pub2

    Google Scholar 

  8. Kim H, Brunner E, Ritter E, Thompson D, Devereux D (1991) Relevance of methods of skin incision technique on development of wound infection. Am Surg 57(2):129–130

    CAS  PubMed  Google Scholar 

  9. Rappaport WD, Hunter GC, Allen R, Lick S, Halldorsson A, Chvapil T, Holcomb M, Chvapil M (1990) Effect of electrocautery on wound healing in midline laparotomy incisions. Am J Surg 160(6):618–620

    Article  CAS  PubMed  Google Scholar 

  10. Hesselink VJ, Luijendijk RW, de Wilt JH, Heide R, Jeekel J (1993) An evaluation of risk factors in incisional hernia recurrence. Surg Gynecol Obstet 176(3):228–234

    CAS  PubMed  Google Scholar 

  11. Luijendijk RW, Hop WC, van den Tol MP, de Lange DC, Braaksma MM, Ijzermans JN, Boelhouwer RU, de Vries BC, Salu MK, Wereldsma JC, Bruijninckx CM, Jeekel J (2000) A comparison of suture repair with mesh repair for incisional hernia. N Engl J Med 343(6):392–398. doi:10.1056/NEJM200008103430603

    Article  CAS  PubMed  Google Scholar 

  12. Cobb WS, Harris JB, Lokey JS, McGill ES, Klove KL (2003) Incisional herniorrhaphy with intraperitoneal composite mesh: a report of 95 cases. Am Surg 69(9):784–787

    PubMed  Google Scholar 

  13. Ziv Y, Brosh T, Lushkov G, Halevy A (2001) Effect of electrocautery vs. scalpel on fascial mechanical properties after midline laparotomy incision in rats. Isr Med Assoc J 3(8):566–568

    CAS  PubMed  Google Scholar 

  14. Kumagai SG, Rosales RF, Hunter GC, Rappaport WD, Witzke DB, Chvapil TA, Chvapil M, Sutherland JC (1991) Effects of electrocautery on midline laparotomy wound infection. Am J Surg 162(6):620–623

    Article  CAS  PubMed  Google Scholar 

  15. Ali Q, Siddique K, Mirza S, Malik AZ (2009) Comparison of superficial surgical site infection following use of diathermy and scalpel for making skin incision in inguinal hernioplasty. Niger J Clin Pract 12(4):371–374

    PubMed  Google Scholar 

  16. Kennedy AD, Otto M, Braughton KR, Whitney AR, Chen L, Mathema B, Mediavilla JR, Byrne KA, Parkins LD, Tenover FC, Kreiswirth BN, Musser JM, DeLeo FR (2008) Epidemic community-associated methicillin-resistant Staphylococcus aureus: recent clonal expansion and diversification. Proc Natl Acad Sci USA 105(4):1327–1332. doi:10.1073/pnas.0710217105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Basak S, Dutta SK, Gupta S, Ganguly AC, De R (1992) Bacteriology of wound infection: evaluation by surface swab and quantitative full thickness wound biopsy culture. J Indian Med Assoc 90(2):33–34

    CAS  PubMed  Google Scholar 

  18. Olsen RJ, Kobayashi SD, Ayeras AA, Ashraf M, Graves SF, Ragasa W, Humbird T, Greaver JL, Cantu C, Swain JL, Jenkins L, Blasdel T, Cagle PT, Gardner DJ, DeLeo FR, Musser JM (2010) Lack of a major role of Staphylococcus aureus Panton–Valentine leukocidin in lower respiratory tract infection in nonhuman primates. Am J Pathol 176(3):1346–1354. doi:10.2353/ajpath.2010.090960

    Article  PubMed  PubMed Central  Google Scholar 

  19. Fox JG, Anderson LC, Loew FM, Quimby FW (2002) Laboratory animal medicine. Academic Press, Cambridge, MA

    Google Scholar 

  20. Maciver AH, McCall MD, Edgar RL, Thiesen AL, Bigam DL, Churchill TA, Shapiro AM (2011) Sirolimus drug-eluting, hydrogel-impregnated polypropylene mesh reduces intra-abdominal adhesion formation in a mouse model. Surgery 150(5):907–915. doi:10.1016/j.surg.2011.06.022

    Article  PubMed  Google Scholar 

  21. Leary S, Underwood W, Anthony R, Cartner S, Corey D, Grandin T, Greenacre CB, Gwaltney-Bran S, McCrackin MA, Meyer R (2013) AVMA guidelines for the euthanasia of animals: 2013 edition. Available at: https://www.avma.org/KB/Policies/Documents/euthanasia.pdf. Accessed Nov 2015.

  22. Overbey DM, Townsend NT, Chapman BC, Bennett DT, Foley LS, Rau AS, Yi JA, Jones EL, Stiegmann GV, Robinson TN (2015) Surgical energy-based device injuries and fatalities reported to the food and drug administration. J Am Coll Surg 221(1):197–205e191. doi:10.1016/j.jamcollsurg.2015.03.031

  23. Saaiq M, Zaib S, Ahmad S (2012) Electrocautery burns: experience with three cases and review of literature. Ann Burns Fire Disasters 25(4):203

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Feldman L, Fuchshuber PR, Jones DB (2012) The SAGES manual on the Fundamental Use of Surgical Energy (FUSE). Springer, Berlin

    Book  Google Scholar 

  25. Watanabe Y, Kurashima Y, Madani A, Feldman LS, Ishida M, Oshita A, Naitoh T, Noma K, Yasumasa K, Nagata H, Nakamura F, Ono K, Suzuki Y, Matsuhashi N, Shichinohe T, Hirano S (2015) Surgeons have knowledge gaps in the safe use of energy devices: a multicenter cross-sectional study. Surg Endosc. doi:10.1007/s00464-015-4243-5

    Google Scholar 

  26. Feldman LS, Fuchshuber P, Jones DB, Mischna J, Schwaitzberg SD, Force FT (2012) Surgeons don’t know what they don’t know about the safe use of energy in surgery. Surg Endosc 26(10):2735–2739. doi:10.1007/s00464-012-2263-y

    Article  PubMed  Google Scholar 

  27. Groot G, Chappell EW (1994) Electrocautery used to create incisions does not increase wound infection rates. Am J Surg 167(6):601–603

    Article  CAS  PubMed  Google Scholar 

  28. Aird LN, Brown CJ (2012) Systematic review and meta-analysis of electrocautery versus scalpel for surgical skin incisions. Am J Surg 204(2):216–221. doi:10.1016/j.amjsurg.2011.09.032

    Article  PubMed  Google Scholar 

  29. Sowa DE, Masterson BJ, Nealon N, von Fraunhofer JA (1985) Effects of thermal knives on wound healing. Obstet Gynecol 66(3):436–439

    CAS  PubMed  Google Scholar 

  30. Franchi M, Ghezzi F, Benedetti-Panici PL, Melpignano M, Fallo L, Tateo S, Maggi R, Scambia G, Mangili G, Buttarelli M (2001) A multicentre collaborative study on the use of cold scalpel and electrocautery for midline abdominal incision. Am J Surg 181(2):128–132

    Article  CAS  PubMed  Google Scholar 

  31. Allan SN, Spitz L, van Noort R, Black MM (1982) A comparative study of scalpel and electrosurgical incision on subsequent wound healing. J Pediatr Surg 17(1):52–54

    Article  CAS  PubMed  Google Scholar 

  32. Mangram AJ, Horan TC, Pearson ML, Silver LC, Jarvis WR, Committee HICPA (1999) Guideline for prevention of surgical site infection. Am J Infect Control 27(2):97–134

    Article  CAS  PubMed  Google Scholar 

  33. Yilmaz KB, Dogan L, Nalbant H, Akinci M, Karaman N, Ozaslan C, Kulacoglu H (2011) Comparing scalpel, electrocautery and ultrasonic dissector effects: the impact on wound complications and pro-inflammatory cytokine levels in wound fluid from mastectomy patients. J Breast Cancer 14(1):58–63. doi:10.4048/jbc.2011.14.1.58

    Article  PubMed  PubMed Central  Google Scholar 

  34. Moreira CM, Amaral E (2014) Use of electrocautery for coagulation and wound complications in caesarean sections. Sci World J 2014:1–6

    Article  Google Scholar 

  35. Nusbaum AG, Gil J, Rippy MK, Warne B, Valdes J, Claro A, Davis SC (2012) Effective method to remove wound bacteria: comparison of various debridement modalities in an in vivo porcine model. J Surg Res 176(2):701–707. doi:10.1016/j.jss.2011.11.1040

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the American Hernia Society Synovis Surgical Research Resident Grant FP00001306.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joseph S. Fernandez-Moure or Brian J. Dunkin.

Ethics declarations

Disclosures

Dr. Fernandez-Moure has funding from DSM biomedical for surgical applications unrelated to this work. Drs. Perres, Jenkins, Olsen, Cantu, Van Eps, Cabrera, Tasciotti, Weiner, and Dunkin have no conflicts of interest or financial ties to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandez-Moure, J.S., Van Eps, J.L., Peress, L. et al. Increased use of surgical energy promotes methicillin-resistant Staphylococcus aureus colonization in rabbits following open ventral hernia mesh repair. Surg Endosc 31, 852–860 (2017). https://doi.org/10.1007/s00464-016-5043-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00464-016-5043-2

Keywords

Navigation