Skip to main content
Log in

Coupled Shifts in Ectomycorrhizal Communities and Plant Uptake of Organic Nitrogen Along a Soil Gradient: An Isotopic Perspective

  • Original Article
  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Plants associating with mutualistic ectomycorrhizal (ECM) fungi may directly obtain nitrogen (N) bound in soil organic matter (N-SOM). However, the contribution of N-SOM to plant growth under field conditions remains poorly constrained. We tested the hypothesis that turnover in ECM communities along soil inorganic N gradients mediates a functional transition from plant reliance on N-SOM in low inorganic N soils, to primarily inorganic N uptake in inorganic N-rich condition soils. We quantified the δ 15 N of Q. rubra foliage and roots, organic and inorganic soil N pools, and used molecular sequencing to characterize ECM communities, morpho-traits associated with N-foraging, and a community aggregated sporocarp δ 15 N. In support of our hypothesis, we document the progressive enrichment of root and foliar δ 15 N with increasing soil inorganic N supply; green leaves ranged from − 5.95 to 0.16‰ as the supply of inorganic N increased. ECM communities inhabiting low inorganic N soils were dominated by the genus Cortinarius, and other fungi forming hyphal morphologies putatively involved in N-SOM acquisition; sporocarp estimates from these communities were enriched (+ 4‰), further supporting fungal N-SOM acquisition. In contrast, trees occurring in high inorganic N soils hosted distinct communities with morpho-traits associated with inorganic N acquisition and depleted sporocarps (+ 0.5‰). Together, our results are consistent with apparent tradeoffs in the foraging cost and contribution of N-SOM to plant growth and demonstrate linkages between ECM community composition, fungal N-foraging potential and foliar δ 15 N. The functional characteristics of ECM communities represent a mechanistic basis for flexibility in plant nutrient foraging strategies. We conclude that the contribution of N-SOM to plant growth is likely contingent on ECM community composition and local soil nutrient availability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Data Availability

All data will be deposited upon acceptance in Dryad. Molecular sequencing data will be uploaded to GenBank upon acceptance. Isotopic data used in this study is available on Dryad at https://doi.org/10.5061/dryad.4f4qrfjbt.

References

  • Averill C, Bhatnagar JM, Dietze MC, Pearse WD, Kivlin SN. 2019. Global imprint of mycorrhizal fungi on whole-plant nutrient economics. Proc Natl Acad Sci USA 116:23163–23168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avis PG. 2012. Ectomycorrhizal iconoclasts: the ITS rDNA diversity and nitrophilic tendencies of fetid Russula. Mycologia 104:998–1007.

    Article  CAS  PubMed  Google Scholar 

  • Bödeker ITM, Clemmensen KE, de Boer W, Martin F, Olson Å, Lindahl BD. 2014. Ectomycorrhizal Cortinarius species participate in enzymatic oxidation of humus in northern forest ecosystems. New Phytol 203:245–256.

    Article  PubMed  Google Scholar 

  • Bödeker ITM, Nygren CMR, Taylor AFS, Olson Å, Lindahl BD. 2009. ClassII peroxidase-encoding genes are present in a phylogenetically wide range of ectomycorrhizal fungi. ISME J 3:1387–1395.

    Article  PubMed  Google Scholar 

  • Brooks PD, Stark JM, McInteer BB, Preston T. 1989. Diffusion method to prepare soil extracts for automated nitrogen-15 analysis. Soil Sci Soc Am J 53:1707–1711.

    Article  CAS  Google Scholar 

  • Cabrera ML, Beare MH. 1993. Alkaline Persulfate oxidation for determining total nitrogen in microbial biomass extracts. Soil Sci Soc Am J 57:1007–1012.

    Article  CAS  Google Scholar 

  • Christian N, Bever JD. 2018. Carbon allocation and competition maintain variation in plant root mutualisms. Ecol Evol 8:5792–5800.

    Article  PubMed  PubMed Central  Google Scholar 

  • Corrales A, Mangan SA, Turner BL, Dalling JW. 2016. An ectomycorrhizal nitrogen economy facilitates monodominance in a neotropical forest. Ecol Lett 19:383–392.

    Article  PubMed  Google Scholar 

  • Courty P-E, François M, Marc-André S, Myriam D, Stéven Criquet, Fabio Z, Marc B, Claude P, Adrien T, Jean G, Franck R. 2016. Into the functional ecology of ectomycorrhizal communities: environmental filtering of enzymatic activities. J Ecol 104:1585–1598.

    Article  Google Scholar 

  • Craine JM, Elmore AJ, Aidar MPM, Bustamante M, Dawson TE, Hobbie EA, Kahmen A, Mack MC, McLauchlan KK, Michelsen A, Nardoto GB, Pardo LH, Peñuelas J, Reich PB, Schuur EAG, Stock WD, Templer PH, Virginia RA, Welker JM, Wright IJ. 2009. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytol 183:980–992.

    Article  CAS  PubMed  Google Scholar 

  • Darrouzet-Nardi A, Ladd MP, Weintraub MN. 2013. Fluorescent microplate analysis of amino acids and other primary amines in soils. Soil Biol Biochem 57:78–82.

    Article  CAS  Google Scholar 

  • Defrenne CE, Philpott TJ, Guichon SHA, Roach WJ, Pickles BJ, Simard SW. 2019. Shifts in ectomycorrhizal fungal communities and exploration types relate to the environment and fine-root traits across interior douglas-fir forests of Western Canada. Front Plant Sci 10:643.

    Article  PubMed  PubMed Central  Google Scholar 

  • Edwards IP, Zak DR. 2010. Phylogenetic similarity and structure of Agaricomycotina communities across a forested landscape. Mol Ecol 19:1469–1482.

    Article  CAS  PubMed  Google Scholar 

  • Gardes M, Bruns TD. 1996. Community structure of ectomycorrhizal fungi in a Pinus muricata forest: above- and below-ground views. Canadian Journal of Botany 74:1572–1583.

    Article  Google Scholar 

  • Genre A, Lanfranco L, Perotto S, Bonfante P. 2020. Unique and common traits in mycorrhizal symbioses. Nat Rev Microbiol 18:649–660.

    Article  CAS  PubMed  Google Scholar 

  • Hobbie EA, Agerer R. 2010. Nitrogen isotopes in ectomycorrhizal sporocarps correspond to belowground exploration types. Plant Soil 327:71–83.

    Article  CAS  Google Scholar 

  • Hobbie EA, Colpaert JV. 2003. Nitrogen availability and colonization by mycorrhizal fungi correlate with nitrogen isotope patterns in plants. New Phytol 157:115–126.

    Article  CAS  PubMed  Google Scholar 

  • Hobbie EA, Hobbie JE. 2008. Natural Abundance of 15N in nitrogen-limited forests and tundra can estimate nitrogen cycling through mycorrhizal fungi: a review. Ecosystems 11:815–830.

    Article  CAS  Google Scholar 

  • Hobbie EA, Högberg P. 2012. Nitrogen isotopes link mycorrhizal fungi and plants to nitrogen dynamics. New Phytol 196:367–382.

    Article  CAS  PubMed  Google Scholar 

  • Hobbie EA, Macko SA, Williams M. 2000. Correlations between foliar δ15N and nitrogen concentrations may indicate plant-mycorrhizal interactions. Oecologia 122:273–283.

    Article  CAS  PubMed  Google Scholar 

  • Hobbie JE, Hobbie EA. 2006. 15N in symbiotic fungi and plants estimates nitrogen and carbon flux rates in arctic tundra. Ecology 87:816–822.

    Article  PubMed  Google Scholar 

  • Hogberg P, Hogberg MN, Quist ME, Ekblad A, Nasholm T. 1999. Nitrogen isotope fractionation during nitrogen uptake by ectomycorrhizal and non-mycorrhizal Pinus sylvestris. New Phytol 142:569–576.

    Article  CAS  Google Scholar 

  • Inselsbacher E, Näsholm T. 2012. The below-ground perspective of forest plants: soil provides mainly organic nitrogen for plants and mycorrhizal fungi. New Phytol 195:329–334.

    Article  CAS  PubMed  Google Scholar 

  • Jones DL, Healey JR, Willett VB, Farrar JF, Hodge A. 2005. Dissolved organic nitrogen uptake by plants—an important N uptake pathway? Soil Biol Biochem 37:413–423.

    Article  CAS  Google Scholar 

  • Kielland K. 1994. Amino acid absorption by arctic plants: implications for plant nutrition and nitrogen cycling. Ecology 75:2373–2383.

    Article  Google Scholar 

  • Kohler A, Kuo A, Nagy LG, Morin E, Barry KW, Buscot F, Canbäck B, Choi C, Cichocki N, Clum A, Colpaert J, Copeland A, Costa MD, Doré J, Floudas D, Gay G, Girlanda M, Henrissat B, Herrmann S, Hess J, Högberg N, Johansson T, Khouja H-R, LaButti K, Lahrmann U, Levasseur A, Lindquist EA, Lipzen A, Marmeisse R, Martino E, Murat C, Ngan CY, Nehls U, Plett JM, Pringle A, Ohm RA, Perotto S, Peter M, Riley R, Rineau F, Ruytinx J, Salamov A, Shah F, Sun H, Tarkka M, Tritt A, Veneault-Fourrey C, Zuccaro A, Tunlid A, Grigoriev IV, Hibbett DS, Martin F. 2015. Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nat Genet 47:410–415.

    Article  CAS  PubMed  Google Scholar 

  • Kohzu A, Tateishi T, Yamada A, Koba K, Wada E. 2000. Nitrogen isotope fractionation during nitrogen transport from ectomycorrhizal fungi, Suillus granulatus, to the host plant, Pinus densiflora. Soil Sci Plant Nutr 46:733–739.

    Article  Google Scholar 

  • Koide RT, Fernandez C, Malcolm G. 2014. Determining place and process: functional traits of ectomycorrhizal fungi that affect both community structure and ecosystem function. New Phytol 201:433–439.

    Article  PubMed  Google Scholar 

  • Kranabetter JM, Hawkins BJ, Jones MD, Robbins S, Dyer T, Li T. 2015. Species turnover (β-diversity) in ectomycorrhizal fungi linked to uptake capacity. Mol Ecol 24:5992–6005.

    Article  CAS  PubMed  Google Scholar 

  • Kranabetter JM, MacKenzie WH. 2010. Contrasts among Mycorrhizal plant guilds in foliar nitrogen concentration and δ15N along productivity gradients of a boreal forest. Ecosystems 13:108–117.

    Article  CAS  Google Scholar 

  • Lilleskov EA, Fahey TJ, Horton TR, Lovett GM. 2002. Belowground ectomycorrhizal fungal community change over a nitrogen deposition gradient in Alaska. Ecology 83:104–115.

    Article  Google Scholar 

  • Lindahl BD, Tunlid A. 2015. Ectomycorrhizal fungi—potential organic matter decomposers, yet not saprotrophs. New Phytol 205:1443–1447.

    Article  CAS  PubMed  Google Scholar 

  • van der Linde S, Suz LM, Orme CDL, Cox F, Andreae H, Asi E, Atkinson B, Benham S, Carroll C, Cools N, De Vos B, Dietrich H-P, Eichhorn J, Gehrmann J, Grebenc T, Gweon HS, Hansen K, Jacob F, Kristöfel F, Lech P, Manninger M, Martin J, Meesenburg H, Merilä P, Nicolas M, Pavlenda P, Rautio P, Schaub M, Schröck H-W, Seidling W, Šrámek V, Thimonier A, Thomsen IM, Titeux H, Vanguelova E, Verstraeten A, Vesterdal L, Waldner P, Wijk S, Zhang Y, Žlindra D, Bidartondo MI. 2018. Environment and host as large-scale controls of ectomycorrhizal fungi. Nature 558:243–248.

    Article  PubMed  Google Scholar 

  • Mayor J, Bahram M, Henkel T, Buegger F, Pritsch K, Tedersoo L. 2015. Ectomycorrhizal impacts on plant nitrogen nutrition: emerging isotopic patterns, latitudinal variation and hidden mechanisms. Ecol Lett 18:96–107.

    Article  PubMed  Google Scholar 

  • Mayor JR, Schuur EAG, Henkel TW. 2009. Elucidating the nutritional dynamics of fungi using stable isotopes. Ecol Lett 12:171–183.

    Article  PubMed  Google Scholar 

  • McClaugherty CA, Pastor J, Aber JD, Melillo JM. 1985. Forest litter decomposition in relation to soil nitrogen dynamics and litter quality. Ecology 66:266–275.

    Article  Google Scholar 

  • Melillo JM, Aber JD, Linkins AE. 1989. Carbon and nitrogen dynamics along the decay continuum: plant litter to soil organic matter. Plant Soil 115:189–198.

    Article  Google Scholar 

  • Michelsen A, Quarmby C, Sleep D, Jonasson S. 1998. Vascular plant 15 N natural abundance in heath and forest tundra ecosystems is closely correlated with presence and type of mycorrhizal fungi in roots. Oecologia 115:406–418.

    Article  PubMed  Google Scholar 

  • Michelsen A, Schmidt IK, Jonasson S, Quarmby C, Sleep D. 1996. Leaf 15N abundance of subarctic plants provides field evidence that ericoid, ectomycorrhizal and non-and arbuscular mycorrhizal species access different sources of soil nitrogen. Oecologia 105:53–63.

    Article  PubMed  Google Scholar 

  • Miyauchi S, Kiss E, Kuo A, Drula E, Kohler A, Sánchez-García M, Morin E, Andreopoulos B, Barry KW, Bonito G, Buée M, Carver A, Chen C, Cichocki N, Clum A, Culley D, Crous PW, Fauchery L, Girlanda M, Hayes RD, Kéri Z, LaButti K, Lipzen A, Lombard V, Magnuson J, Maillard F, Murat C, Nolan M, Ohm RA, Pangilinan J, de Pereira MF, Perotto S, Peter M, Pfister S, Riley R, Sitrit Y, Stielow JB, Szöllősi G, Žifčáková L, Štursová M, Spatafora JW, Tedersoo L, Vaario L-M, Yamada A, Yan M, Wang P, Xu J, Bruns T, Baldrian P, Vilgalys R, Dunand C, Henrissat B, Grigoriev IV, Hibbett D, Nagy LG, Martin FM. 2020. Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits. Nat Commun 11:5125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moeller HV, Peay KG, Fukami T. 2014. Ectomycorrhizal fungal traits reflect environmental conditions along a coastal California edaphic gradient. FEMS Microbiol Ecol 87:797–806.

    Article  CAS  PubMed  Google Scholar 

  • Näsholm T, Kielland K, Ganeteg U. 2009. Uptake of organic nitrogen by plants. New Phytol 182:31–48.

    Article  PubMed  Google Scholar 

  • Nilsson LO, Giesler R, Bååth E, Wallander H. 2005. Growth and biomass of mycorrhizal mycelia in coniferous forests along short natural nutrient gradients. New Phytol 165:613–622.

    Article  PubMed  Google Scholar 

  • Nilsson RH, Larsson K-H, Taylor AFS, Bengtsson-Palme J, Jeppesen TS, Schigel D, Kennedy P, Picard K, Glöckner FO, Tedersoo L, Saar I, Kõljalg U, Abarenkov K. 2019. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucl Acids Res 47:D259–D264.

    Article  CAS  PubMed  Google Scholar 

  • Nordin A, Schmidt IK, Shaver GR. 2004. Nitrogen uptake by arctic soil microbes and plants in relation to soil nitrogen supply. Ecology 85:955–962.

    Article  Google Scholar 

  • Orwin KH, Kirschbaum MUF, John MGS, Dickie IA. 2011. Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: a model-based assessment. Ecol Lett 14:493–502.

    Article  PubMed  Google Scholar 

  • Pardo LH, Templer PH, Goodale CL, Duke S, Groffman PM, Adams MB, Boeckx P, Boggs J, Campbell J, Colman B, Compton J, Emmett B, Gundersen P, Kjønaas J, Lovett G, Mack M, Magill A, Mbila M, Mitchell MJ, McGee G, McNulty S, Nadelhoffer K, Ollinger S, Ross D, Rueth H, Rustad L, Schaberg P, Schiff S, Schleppi P, Spoelstra J, Wessel W. 2006. Regional assessment of n saturation using foliar and root δ15N. Biogeochemistry 80:143–171.

    Article  Google Scholar 

  • Pastor J, Aber JD, McClaugherty CA, Melillo JM. 1984. Aboveground production and N and P cycling along a nitrogen mineralization gradient on Blackhawk Island, Wisconsin. Ecology 65:256–268.

    Article  CAS  Google Scholar 

  • Peay KG, Russo SE, McGuire KL, Lim Z, Chan JP, Tan S, Davies SJ. 2015. Lack of host specificity leads to independent assortment of dipterocarps and ectomycorrhizal fungi across a soil fertility gradient. Ecol Lett 18:807–816.

    Article  PubMed  Google Scholar 

  • Pellitier PT, Zak DR. 2018. Ectomycorrhizal fungi and the enzymatic liberation of nitrogen from soil organic matter: why evolutionary history matters. New Phytologist 217:68–73.

    Article  CAS  Google Scholar 

  • Phillips RP, Brzostek E, Midgley MG. 2013. The mycorrhizal-associated nutrient economy: a new framework for predicting carbon–nutrient couplings in temperate forests. New Phytol 199:41–51.

    Article  CAS  PubMed  Google Scholar 

  • Read D. 1991. Mycorrhizas in ecosystems. Experientia 47:376–391.

    Article  Google Scholar 

  • Read DJ, Perez-Moreno J. 2003. Mycorrhizas and nutrient cycling in ecosystems: a journey towards relevance? New Phytol 157:475–492.

    Article  CAS  PubMed  Google Scholar 

  • Robinson D. 2001. δ15N as an integrator of the nitrogen cycle. Trends Ecol Evol 16:153–162.

    Article  CAS  PubMed  Google Scholar 

  • Rothstein DE. 2009. Soil amino-acid availability across a temperate-forest fertility gradient. Biogeochemistry 92:201–215.

    Article  CAS  Google Scholar 

  • Smith ME, Henkel TW, Aime MC, Fremier AK, Vilgalys R. 2011. Ectomycorrhizal fungal diversity and community structure on three co-occurring leguminous canopy tree species in a Neotropical rainforest. New Phytol 192:699–712.

    Article  PubMed  Google Scholar 

  • Smith SE, Read DJ. 2010. Mycorrhizal symbiosis. Cambridge: Academic Press.

    Google Scholar 

  • Sterkenburg E, Clemmensen KE, Ekblad A, Finlay RD, Lindahl BD. 2018. Contrasting effects of ectomycorrhizal fungi on early and late stage decomposition in a boreal forest. ISME J 12:2187–2197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suz LM, Barsoum N, Benham S, Dietrich H-P, Fetzer KD, Fischer R, García P, Gehrman J, Kristöfel F, Manninger M, Neagu S, Nicolas M, Oldenburger J, Raspe S, Sánchez G, Schröck HW, Schubert A, Verheyen K, Verstraeten A, Bidartondo MI. 2014. Environmental drivers of ectomycorrhizal communities in Europe’s temperate oak forests. Mol Ecol 23:5628–5644.

    Article  CAS  PubMed  Google Scholar 

  • Taylor AFS, Fransson PM, Högberg P, Högberg MN, Plamboeck AH. 2003. Species level patterns in 13C and 15N abundance of ectomycorrhizal and saprotrophic fungal sporocarps. New Phytol 159:757–774.

    Article  CAS  PubMed  Google Scholar 

  • Taylor AFS, Högbom L, Högberg M, Lyon AJE, Näsholm T, Högberg P. 1997. Natural 15N abundance in fruit bodies of ectomycorrhizal fungi from boreal forests. New Phytol 136:713–720.

    Article  PubMed  Google Scholar 

  • Taylor AFS, Martin F, Read DJ. 2000. Fungal diversity in ectomycorrhizal communities of Norway spruce [Picea abies (L.) Karst] and Beech (Fagus sylvatica L.) along north-south transects in Europe. In: Schulze E-D, Ed. Carbon and nitrogen cycling in European forest ecosystems. Ecological studies, . Berlin: Springer. pp 343–365.

    Chapter  Google Scholar 

  • Tedersoo L, Naadel T, Bahram M, Pritsch K, Buegger F, Leal M, Kõljalg U, Põldmaa K. 2012. Enzymatic activities and stable isotope patterns of ectomycorrhizal fungi in relation to phylogeny and exploration types in an afrotropical rain forest. New Phytol 195:832–843.

    Article  CAS  PubMed  Google Scholar 

  • Tedersoo L, Smith ME. 2013. Lineages of ectomycorrhizal fungi revisited: foraging strategies and novel lineages revealed by sequences from belowground. Fungal Biol Rev 27:83–99.

    Article  Google Scholar 

  • Terrer C, Jackson RB, Prentice IC, Keenan TF, Kaiser C, Vicca S, Fisher JB, Reich PB, Stocker BD, Hungate BA, Peñuelas J, McCallum I, Soudzilovskaia NA, Cernusak LA, Talhelm AF, Van Sundert K, Piao S, Newton PCD, Hovenden MJ, Blumenthal DM, Liu YY, Müller C, Winter K, Field CB, Viechtbauer W, Van Lissa CJ, Hoosbeek MR, Watanabe M, Koike T, Leshyk VO, Polley HW, Franklin O. 2019. Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nat Climate Change 9:684–689.

    Article  CAS  Google Scholar 

  • Terrer C, Vicca S, Hungate BA, Phillips RP, Prentice IC. 2016. Mycorrhizal association as a primary control of the CO2 fertilization effect. Science 353:72–74.

    Article  CAS  PubMed  Google Scholar 

  • Vitousek P. 1982. Nutrient cycling and nutrient use efficiency. Am Nat 119:553–572.

    Article  Google Scholar 

  • Wang Y, Naumann U, Wright ST, Warton DI. 2012. mvabund– an R package for model-based analysis of multivariate abundance data. Methods Ecol Evol 3:471–474.

    Article  Google Scholar 

  • Werner RA, Schmidt H-L. 2002. The in vivo nitrogen isotope discrimination among organic plant compounds. Phytochemistry 61:465–484.

    Article  CAS  PubMed  Google Scholar 

  • Wieder WR, Cleveland CC, Smith WK, Todd-Brown K. 2015. Future productivity and carbon storage limited by terrestrial nutrient availability. Nat Geosci 8:441–444.

    Article  CAS  Google Scholar 

  • Wolfe BE, Tulloss RE, Pringle A. 2012. The irreversible loss of a decomposition pathway marks the single origin of an ectomycorrhizal symbiosis. PLoS ONE 7:e39597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yano Y, Shaver GR, Giblin AE, Rastetter EB. 2010. Depleted 15N in hydrolysable-N of arctic soils and its implication for mycorrhizal fungi–plant interaction. Biogeochemistry 97:183–194.

    Article  CAS  Google Scholar 

  • Zak D, Grigal D. 1991. Nitrogen mineralization, nitrification and denitrification in upland and wetland ecosystems. Oecologia 88:189–196.

    Article  PubMed  Google Scholar 

  • Zak DR, Groffman PM, Pregitzer KS, Christensen S, Tiedje JM. 1990. The vernal dam: plant-microbe competition for nitrogen in northern hardwood forests. Ecology 71:651–656.

    Article  Google Scholar 

  • Zak DR, Pellitier PT, Argiroff W, Castillo B, James TY, Nave LE, Averill C, Beidler KV, Bhatnagar J, Blesh J, Classen AT, Craig M, Fernandez CW, Gundersen P, Johansen R, Koide RT, Lilleskov EA, Lindahl BD, Nadelhoffer KJ, Phillips RP, Tunlid A. 2019. Exploring the role of ectomycorrhizal fungi in soil carbon dynamics. New Phytol 223:33–39.

    Article  PubMed  Google Scholar 

  • Zak DR, Pregitzer KS. 1990. Spatial and temporal variability of nitrogen cycling in northern lower Michigan. For Sci 36:367–380.

    Google Scholar 

  • Zak DR, Pregitzer KS, Host GE. 1986. Landscape variation in nitrogen mineralization and nitrification. Can J For Res 16:1258–1263.

    Article  Google Scholar 

Download references

Acknowledgements

We thank J. Matthews, N. Ahmad, E. Herrick, B. VanDusen and the Dublin Store for valuable laboratory and field support. We thank J. Allgeier and L. Cline for their thoughtful comments on a draft of this manuscript. This work is supported by NSF award 1754369 to DRZ, and an Integrated Training in Microbial Systems (ITiMS) Fellowship to PTP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter T. Pellitier.

Additional information

Author Contributions

PP, DZ, and WA conceived of the study. All authors contributed to data collection. PP analyzed data with input from DZ and WA. PP wrote the paper and all authors provided constructive edits.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7391 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pellitier, P.T., Zak, D.R., Argiroff, W.A. et al. Coupled Shifts in Ectomycorrhizal Communities and Plant Uptake of Organic Nitrogen Along a Soil Gradient: An Isotopic Perspective. Ecosystems 24, 1976–1990 (2021). https://doi.org/10.1007/s10021-021-00628-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-021-00628-6

Keywords

Navigation