Skip to main content
Log in

Research progress of electrolytic treatment technology for organic wastewater

  • Review Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Advanced oxidation technologies (AOPs) are efficient and environmentally friendly methods primarily used for removing persistent organic pollutants (POPs) from industrial wastewater. Traditional wastewater treatment processes have low efficiency in removing harmful pollutants from wastewater. This paper reviews the basic principles and research status of various electrochemical methods, compares their performance and advantages and disadvantages, and summarizes and provides an outlook on the development of electro-oxidation water treatment technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Villegas LGC, Mashhadi N, Chen M et al (2016) A short review of techniques for phenol removal from wastewater. Curr Pollution Rep 2:157–167. https://doi.org/10.1007/s40726-016-0035-3

    Article  CAS  Google Scholar 

  2. Panizza M, Bocca C, Cerisola G (2000) Electrochemical treatment of wastewater containing polyaromatic organic pollutants. Water Res 34:2601–2605. https://doi.org/10.1016/S0043-1354(00)00145-7

    Article  CAS  Google Scholar 

  3. Bibi A, Bibi S, Abu-Dieyeh M, Al-Ghouti MA (2023) Towards sustainable physiochemical and biological techniques for the remediation of phenol from wastewater: a review on current applications and removal mechanisms. J Clean Prod 417:137810. https://doi.org/10.1016/j.jclepro.2023.137810

    Article  CAS  Google Scholar 

  4. Mumtaz F, Li B, Al Shehhi MR et al (2024) Treatment of phenolic-wastewater by hybrid technologies: a review. Journal of Water Process Engineering 57:104695. https://doi.org/10.1016/j.jwpe.2023.104695

    Article  Google Scholar 

  5. Liu J-J, Kim J-G, Kim H-B et al (2023) Covalent immobilizing horseradish peroxidase on electrochemically-functionalized biochar for phenol removal. Chemosphere 312:137218. https://doi.org/10.1016/j.chemosphere.2022.137218

    Article  CAS  PubMed  Google Scholar 

  6. Zhi JF, Wang HB, Nakashima T et al (2003) Electrochemical incineration of organic pollutants on boron-doped diamond electrode. Evidence for direct electrochemical oxidation pathway. J Phys Chem B 107:13389–13395. https://doi.org/10.1021/jp030279g

    Article  CAS  Google Scholar 

  7. Horikoshi S, Hidaka T, Nishimura F, Kishimoto N (2024) Development of separation and recovery technology of cultured Euglena gracilis using activated sludge for anaerobic digestion. Bioresource Technology Reports 25:101790. https://doi.org/10.1016/j.biteb.2024.101790

    Article  CAS  Google Scholar 

  8. Wei J, Huang X, Wang H et al (2023) Insight into biofilm formation of wastewater treatment processes: nitrogen removal performance and biological mechanisms. Sci Total Environ 903:166550. https://doi.org/10.1016/j.scitotenv.2023.166550

    Article  CAS  PubMed  Google Scholar 

  9. Pinedo-Hernández J, Marrugo-Negrete J, Pérez-Espitia M et al (2024) A pilot-scale electrocoagulation-treatment wetland system for the treatment of landfill leachate. J Environ Manage 351:119681. https://doi.org/10.1016/j.jenvman.2023.119681

    Article  CAS  PubMed  Google Scholar 

  10. Saleh IA, Zouari N, Al-Ghouti MA (2020) Removal of pesticides from water and wastewater: chemical, physical and biological treatment approaches. Environ Technol Innov 19:101026. https://doi.org/10.1016/j.eti.2020.101026

    Article  Google Scholar 

  11. Tabaraki R, Zadkhast S, Najafi A, Moghaddam VR (2023) Performance and cost analysis of dye wastewater treatment by Fenton, electro-Fenton, and biosorption: Box-Behnken experimental design and response surface methodology. Biomass Conv Bioref 13:13527–13537. https://doi.org/10.1007/s13399-022-02809-2

    Article  CAS  Google Scholar 

  12. CHEN GH (2003) Electrochemical technologies in wastewater treatment. Sep Purif Technol 1:1–31

    Google Scholar 

  13. Liu F, Zhou R, Zhang C et al (2024) Critical review on the pulsed electrochemical technologies for wastewater treatment: fundamentals, current trends, and future studies. Chem Eng J 479:147588. https://doi.org/10.1016/j.cej.2023.147588

    Article  CAS  Google Scholar 

  14. Delgado A, Rodriguez DJ, Amadei CA, Makino M (2024) Water in Circular Economy and Resilience (WICER) Framework. Utilities Policy 87:101604. https://doi.org/10.1016/j.jup.2023.101604

    Article  Google Scholar 

  15. Vinayagam V (2024) Envisioning the innovative approaches to achieve circular economy in the water and wastewater sector. Environ Res. https://doi.org/10.1016/j.envres.2023.117663

    Article  PubMed  Google Scholar 

  16. Xu H, Sun X, Yang H et al (2024) Degradation of aqueous phenol by combined ultraviolet and electrochemical oxidation treatment. J Clean Prod 436:140672. https://doi.org/10.1016/j.jclepro.2024.140672

    Article  CAS  Google Scholar 

  17. Heidari Z, Pelalak R, Zhou M (2023) A critical review on the recent progress in application of electro-Fenton process for decontamination of wastewater at near-neutral pH. Chem Eng J 474:145741. https://doi.org/10.1016/j.cej.2023.145741

    Article  CAS  Google Scholar 

  18. Li X, Chen S, Angelidaki I, Zhang Y (2018) Bio-electro-Fenton processes for wastewater treatment: advances and prospects. Chem Eng J 354:492–506. https://doi.org/10.1016/j.cej.2018.08.052

    Article  CAS  Google Scholar 

  19. Wang Z, Liu M, Xiao F et al (2022) Recent advances and trends of heterogeneous electro-Fenton process for wastewater treatment-review. Chin Chem Lett 33:653–662. https://doi.org/10.1016/j.cclet.2021.07.044

    Article  CAS  Google Scholar 

  20. Gao Y, Wang P, Chu Y et al (2024) Redox property of coordinated iron ion enables activation of O2 via in-situ generated H2O2 and additionally added H2O2 in EDTA-chelated Fenton reaction. Water Res 248:120826. https://doi.org/10.1016/j.watres.2023.120826

    Article  CAS  PubMed  Google Scholar 

  21. Yu D, Pei Y, Ji Z et al (2022) A review on the landfill leachate treatment technologies and application prospects of three-dimensional electrode technology. Chemosphere 291:132895. https://doi.org/10.1016/j.chemosphere.2021.132895

    Article  CAS  PubMed  Google Scholar 

  22. Qi J, Jiang G, Wan Y et al (2023) Nanomaterials-modulated Fenton reactions: strategies, chemodynamic therapy and future trends. Chem Eng J 466:142960. https://doi.org/10.1016/j.cej.2023.142960

    Article  CAS  Google Scholar 

  23. Guo Z, Zhang Y, Jia H et al (2022) Electrochemical methods for landfill leachate treatment: a review on electrocoagulation and electrooxidation. Sci Total Environ 806:150529. https://doi.org/10.1016/j.scitotenv.2021.150529

    Article  CAS  PubMed  Google Scholar 

  24. Bhatt P, Engel BA, Shivaram KB et al (2024) Treatment and optimization of high-strength egg-wash wastewater effluent using electrocoagulation and electrooxidation methods. Chemosphere 347:140632. https://doi.org/10.1016/j.chemosphere.2023.140632

    Article  CAS  PubMed  Google Scholar 

  25. Soni R, Bhardwaj S, Shukla DP (2020) Various water-treatment technologies for inorganic contaminants: current status and future aspects. In: Inorganic Pollutants in Water. Elsevier, pp 273–295. https://doi.org/10.1016/B978-0-12-818965-8.00014-7

  26. Magnisali E, Yan Q, Vayenas DV (2022) Electrocoagulation as a revived wastewater treatment method-practical approaches: a review. J of Chemical Tech & Biotech 97:9–25. https://doi.org/10.1002/jctb.6880

    Article  CAS  Google Scholar 

  27. Boinpally S, Kolla A, Kainthola J et al (2023) A state-of-the-art review of the electrocoagulation technology for wastewater treatment. Water Cycle 4:26–36. https://doi.org/10.1016/j.watcyc.2023.01.001

    Article  Google Scholar 

  28. Akter S, Suhan MBK, Islam MS (2022) Recent advances and perspective of electrocoagulation in the treatment of wastewater: a review. Environmental Nanotechnology, Monitoring & Management 17:100643. https://doi.org/10.1016/j.enmm.2022.100643

    Article  CAS  Google Scholar 

  29. Belibagli P, Akbay HEG, Arslan S et al (2024) Enhanced biogas yield in anaerobic digestion of citric acid wastewater by pre-treatment: the effect of calcium hydroxide precipitation and electrocoagulation process. Process Saf Environ Prot 184:1344–1356. https://doi.org/10.1016/j.psep.2024.02.050

    Article  CAS  Google Scholar 

  30. Leovac Maćerak A, Duduković N, Kiss F et al (2024) Electrocoagulation in treatment of municipal wastewater– life cycle impact assessment. Chemosphere 355:141701. https://doi.org/10.1016/j.chemosphere.2024.141701

    Article  CAS  PubMed  Google Scholar 

  31. Kim M-K, Kim T, Kim T-K et al (2020) Degradation mechanism of perfluorooctanoic acid (PFOA) during electrocoagulation using Fe electrode. Sep Purif Technol 247:116911. https://doi.org/10.1016/j.seppur.2020.116911

    Article  CAS  Google Scholar 

  32. Chou W-L, Wang C-T, Huang K-Y (2010) Investigation of process parameters for the removal of polyvinyl alcohol from aqueous solution by iron electrocoagulation. Desalination 251:12–19. https://doi.org/10.1016/j.desal.2009.10.008

    Article  CAS  Google Scholar 

  33. Das PP, Sharma M, Purkait MK (2022) Recent progress on electrocoagulation process for wastewater treatment: a review. Sep Purif Technol 292:121058. https://doi.org/10.1016/j.seppur.2022.121058

    Article  CAS  Google Scholar 

  34. Shah AA, Walia S, Kazemian H (2024) Advancements in combined electrocoagulation processes for sustainable wastewater treatment: a comprehensive review of mechanisms, performance, and emerging applications. Water Res 252:121248. https://doi.org/10.1016/j.watres.2024.121248

    Article  CAS  PubMed  Google Scholar 

  35. Bharti M, Das PP, Purkait MK (2023) A review on the treatment of water and wastewater by electrocoagulation process: advances and emerging applications. J Environ Chem Eng 11:111558. https://doi.org/10.1016/j.jece.2023.111558

    Article  CAS  Google Scholar 

  36. Mir N, Bicer Y (2021) Integration of electrodialysis with renewable energy sources for sustainable freshwater production: a review. J Environ Manage 289:112496. https://doi.org/10.1016/j.jenvman.2021.112496

    Article  CAS  PubMed  Google Scholar 

  37. Tekinalp Ö, Zimmermann P, Birger Byremo Solberg S et al (2023) Selective recovery of silver from copper impurities by electrodialysis: tailoring monovalent selective cation exchange membranes by monomolecular layer deposition. Chem Eng J 477:147140. https://doi.org/10.1016/j.cej.2023.147140

    Article  CAS  Google Scholar 

  38. Ji P-Y, Ji Z-Y, Chen Q-B et al (2018) Effect of coexisting ions on recovering lithium from high Mg2+/Li+ ratio brines by selective-electrodialysis. Sep Purif Technol 207:1–11. https://doi.org/10.1016/j.seppur.2018.06.012

    Article  CAS  Google Scholar 

  39. Shen C, Li Y, Lu G, Meng Q (2024) Electrodialysis treatment of rhamnolipids hydrolysate and its waste water for use as water-soluble fertilizer. Biores Technol 393:130080. https://doi.org/10.1016/j.biortech.2023.130080

    Article  CAS  Google Scholar 

  40. Bazinet L, Lamarche F, Ippersiel D (1998) electrodialysis: applications of electrodialysis in the food industry. Trends Food Sci Technol 9:107–113. https://doi.org/10.1016/S0924-2244(98)00026-0

    Article  CAS  Google Scholar 

  41. Gurreri L, Tamburini A, Cipollina A, Micale G (2020) Electrodialysis applications in wastewater treatment for environmental protection and resources recovery: a systematic review on progress and perspectives. Membranes 10:146. https://doi.org/10.3390/membranes10070146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Al-Amshawee S, Yunus MYBM, Azoddein AAM et al (2020) Electrodialysis desalination for water and wastewater: a review. Chem Eng J 380:122231. https://doi.org/10.1016/j.cej.2019.122231

    Article  CAS  Google Scholar 

  43. Tadesse B, Albijanic B, Makuei F, Browner R (2019) Recovery of fine and ultrafine mineral particles by electroflotation – a review. Miner Process Extr Metall Rev 40:108–122. https://doi.org/10.1080/08827508.2018.1497627

    Article  CAS  Google Scholar 

  44. Kyzas GZ, Matis KA (2016) Electroflotation process: a review. J Mol Liq 220:657–664. https://doi.org/10.1016/j.molliq.2016.04.128

    Article  CAS  Google Scholar 

  45. Bracher GH, Carissimi E, Wolff DB et al (2021) Optimization of an electrocoagulation-flotation system for domestic wastewater treatment and reuse. Environ Technol 42:2669–2679. https://doi.org/10.1080/09593330.2019.1709905

    Article  CAS  PubMed  Google Scholar 

  46. Mickova I (2015) Advanced electrochemical technologies in wastewater treatment. Part II: Electro-Flocculation and Electro- Flotation. American Scientific Research Journal for Engineering, Technology, and Sciences 14:273–294

    Google Scholar 

  47. Romanov AM (1998) Electroflotation in waste water treatment: results and perspectives. In: Gallios GP, Matis KA (eds) Mineral Processing and the Environment. Springer, Netherlands, Dordrecht, pp 335–360

    Chapter  Google Scholar 

  48. Jafari E, Malayeri MR, Brückner H, Krebs P (2023) Impact of operating parameters of electrocoagulation-flotation on the removal of turbidity from synthetic wastewater using aluminium electrodes. Miner Eng 193:108007. https://doi.org/10.1016/j.mineng.2023.108007

    Article  CAS  Google Scholar 

  49. Mohtashami R, Shang JQ (2019) Electroflotation for treatment of industrial wastewaters: a focused review. Environ Process 6:325–353. https://doi.org/10.1007/s40710-019-00348-z

    Article  Google Scholar 

  50. Ferreira Gomes B, Ferreira Da Silva P, Silva Lobo CM et al (2017) Strong magnetoelectrolysis effect during electrochemical reaction monitored in situ by high-resolution NMR spectroscopy. Anal Chim Acta 983:91–95. https://doi.org/10.1016/j.aca.2017.06.008

    Article  CAS  PubMed  Google Scholar 

  51. Liu H, Li X, Zhang X et al (2023) Study on nitrate removal from wastewater by micro-electrolysis and construction of iron-carbon micro-electrolysis reactor (ICMER). Chem Eng Sci 280:119038. https://doi.org/10.1016/j.ces.2023.119038

    Article  CAS  Google Scholar 

  52. Hu M, Luo T, Li Q et al (2022) Remediation of low C/N wastewater by iron–carbon micro-electrolysis coupled with biological denitrification: performance, mechanisms, and application. Journal of Water Process Engineering 48:102899. https://doi.org/10.1016/j.jwpe.2022.102899

    Article  Google Scholar 

  53. Ying D, Xu X, Yang C et al (2013) Treatment of mature landfill leachate by a continuous modular internal micro-electrolysis Fenton reactor. Res Chem Intermed 39:2763–2776. https://doi.org/10.1007/s11164-012-0796-2

    Article  CAS  Google Scholar 

  54. Yang W, Li D, Zhang J, Wang Z (2021) Removal of ammonia nitrogen from wastewater by three-dimensional electrode system based on solid waste containing iron. Environmental Engineering Research 27:210411. https://doi.org/10.4491/eer.2021.411

    Article  Google Scholar 

  55. Ma J, Gao M, Shi H et al (2021) Progress in research and development of particle electrodes for three-dimensional electrochemical treatment of wastewater: a review. Environ Sci Pollut Res 28:47800–47824. https://doi.org/10.1007/s11356-021-13785-x

    Article  Google Scholar 

  56. Zhu X, Ni J, Xing X et al (2011) Synergies between electrochemical oxidation and activated carbon adsorption in three-dimensional boron-doped diamond anode system. Electrochim Acta 56:1270–1274. https://doi.org/10.1016/j.electacta.2010.10.073

    Article  CAS  Google Scholar 

  57. Xu L, Zhao H, Shi S et al (2008) Electrolytic treatment of C.I. Acid Orange 7 in aqueous solution using a three-dimensional electrode reactor. Dyes Pigm 77:158–164. https://doi.org/10.1016/j.dyepig.2007.04.004

    Article  CAS  Google Scholar 

  58. Li Q, Zhou H, Zhang F et al (2022) Electrochemical treatment of malachite green dye wastewater by pulse three-dimensional electrode method. Environ Technol 45:1919–1932. https://doi.org/10.1080/09593330.2022.2157757

    Article  CAS  PubMed  Google Scholar 

  59. Yu D, Cui J, Li X et al (2020) Electrochemical treatment of organic pollutants in landfill leachate using a three-dimensional electrode system. Chemosphere 243:125438. https://doi.org/10.1016/j.chemosphere.2019.125438

    Article  CAS  PubMed  Google Scholar 

  60. Ganiyu SO, Zhou M, Martínez-Huitle CA (2018) Heterogeneous electro-Fenton and photoelectro-Fenton processes: a critical review of fundamental principles and application for water/wastewater treatment. Appl Catal B 235:103–129. https://doi.org/10.1016/j.apcatb.2018.04.044

    Article  CAS  Google Scholar 

  61. Shokri A, Nasernejad B, Sanavi Fard M (2023) Challenges and future roadmaps in heterogeneous electro-fenton process for wastewater treatment. Water Air Soil Pollut 234:153. https://doi.org/10.1007/s11270-023-06139-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Poza-Nogueiras V, Rosales E, Pazos M, Sanromán MÁ (2018) Current advances and trends in electro-Fenton process using heterogeneous catalysts – a review. Chemosphere 201:399–416. https://doi.org/10.1016/j.chemosphere.2018.03.002

    Article  CAS  PubMed  Google Scholar 

  63. Liu X, Zhou Y, Zhang J et al (2018) Insight into electro-Fenton and photo-Fenton for the degradation of antibiotics: mechanism study and research gaps. Chem Eng J 347:379–397. https://doi.org/10.1016/j.cej.2018.04.142

    Article  CAS  Google Scholar 

  64. Brillas E, Baños MÁ, Skoumal M et al (2007) Degradation of the herbicide 2,4-DP by anodic oxidation, electro-Fenton and photoelectro-Fenton using platinum and boron-doped diamond anodes. Chemosphere 68:199–209. https://doi.org/10.1016/j.chemosphere.2007.01.038

    Article  CAS  PubMed  Google Scholar 

  65. Le TXH, Bechelany M, Lacour S et al (2015) High removal efficiency of dye pollutants by electron-Fenton process using a graphene based cathode. Carbon 94:1003–1011. https://doi.org/10.1016/j.carbon.2015.07.086

    Article  CAS  Google Scholar 

  66. Olvera-Vargas H, Cocerva T, Oturan N et al (2016) Bioelectro-Fenton: a sustainable integrated process for removal of organic pollutants from water: Application to mineralization of metoprolol. J Hazard Mater 319:13–23. https://doi.org/10.1016/j.jhazmat.2015.12.010

    Article  CAS  PubMed  Google Scholar 

  67. Nidheesh PV, Gandhimathi R (2012) Trends in electro-Fenton process for water and wastewater treatment: an overview. Desalination 299:1–15. https://doi.org/10.1016/j.desal.2012.05.011

    Article  CAS  Google Scholar 

  68. Rahim Pouran S, Abdul Aziz AR, Wan Daud WMA (2015) Review on the main advances in photo-Fenton oxidation system for recalcitrant wastewaters. J Ind Eng Chem 21:53–69. https://doi.org/10.1016/j.jiec.2014.05.005

    Article  CAS  Google Scholar 

  69. Oturan MA, Aaron J-J (2014) Advanced oxidation processes in water/wastewater treatment: principles and applications. a review. Crit Rev Environ Sci Technol 44:2577–2641. https://doi.org/10.1080/10643389.2013.829765

    Article  CAS  Google Scholar 

  70. Ramírez RJ, Arellano CAP, Gallegos AAÁ et al (2015) H2O2-assisted TiO2 generation during the photoelectrocatalytic process to decompose the acid green textile dye by Fenton reaction. J Photochem Photobiol, A 305:51–59. https://doi.org/10.1016/j.jphotochem.2015.03.004

    Article  CAS  Google Scholar 

  71. Manrique-Losada L, Quimbaya-Ñañez C, Serna-Galvis EA et al (2022) Enhanced solar photo-electro-Fenton by Theobroma grandiflorum addition during pharmaceuticals elimination in municipal wastewater: action routes, process improvement, and biodegradability of the treated water. J Environ Chem Eng 10:107489. https://doi.org/10.1016/j.jece.2022.107489

    Article  CAS  Google Scholar 

  72. Brillas E, Mur E, Sauleda R et al (1998) Aniline mineralization by AOP’s: anodic oxidation, photocatalysis, electro-Fenton and photoelectro-Fenton processes. Appl Catal B 16:31–42. https://doi.org/10.1016/S0926-3373(97)00059-3

    Article  CAS  Google Scholar 

  73. Palmisano G, Loddo V, El Nazer HH et al (2009) Graphite-supported TiO2 for 4-nitrophenol degradation in a photoelectrocatalytic reactor. Chem Eng J 155:339–346. https://doi.org/10.1016/j.cej.2009.07.002

    Article  CAS  Google Scholar 

  74. Wang R, Cao J, Song J et al (2022) Application of boron doped diamond for electro-Fenton and photoelectro-Fenton decolorization of azo dye from dye-containing wastewater: Acid Red 1. International Journal of Electrochemical Science 17:220249. https://doi.org/10.20964/2022.02.45

    Article  CAS  Google Scholar 

  75. Zheng H, Zhang H, Sun X et al (2010) The catalytic oxidation of malachite green by the microwave-Fenton processes. Water Sci Technol 62:1304–1311. https://doi.org/10.2166/wst.2010.411

    Article  CAS  PubMed  Google Scholar 

  76. Nidheesh PV, Ganiyu SO, Martínez-Huitle CA et al (2023) Recent advances in electro-Fenton process and its emerging applications. Crit Rev Environ Sci Technol 53:887–913. https://doi.org/10.1080/10643389.2022.2093074

    Article  CAS  Google Scholar 

  77. Wang Y, Zhao H, Gao J et al (2012) Rapid mineralization of azo-dye wastewater by microwave synergistic electro-Fenton oxidation process. J Phys Chem C 116:7457–7463. https://doi.org/10.1021/jp212590f

    Article  CAS  Google Scholar 

  78. Cai Y, Li J, Qu G et al (2021) Research on dynamics and mechanism of treatment on phenol simulated wastewater by the ultrasound cooperated electro-assisted micro-electrolysis. Water Environ Res 93:1243–1253. https://doi.org/10.1002/wer.1533

    Article  CAS  PubMed  Google Scholar 

  79. Zhang M, Zhang Z, Liu S et al (2020) Ultrasound-assisted electrochemical treatment for phenolic wastewater. Ultrason Sonochem 65:105058. https://doi.org/10.1016/j.ultsonch.2020.105058

    Article  CAS  PubMed  Google Scholar 

  80. Chen X, Shen Z, Zhu X et al (2005) Advanced treatment of textile wastewater for reuse using electrochemical oxidation and membrane filtration. Water SA 31:127–132. https://doi.org/10.4314/wsa.v31i1.5129

    Article  CAS  Google Scholar 

  81. Altin A (2008) An alternative type of photoelectro-Fenton process for the treatment of landfill leachate. Sep Purif Technol 61:391–397. https://doi.org/10.1016/j.seppur.2007.12.004

    Article  CAS  Google Scholar 

  82. Kashif N, Ouyang F (2009) Parameters effect on heterogeneous photocatalysed degradation of phenol in aqueous dispersion of TiO2. J Environ Sci 21:527–533. https://doi.org/10.1016/S1001-0742(08)62303-7

    Article  CAS  Google Scholar 

Download references

Funding

This study is funded by the Shanxi Collaborative Innovation Center of High Value-added Utilization of Coal-related Wastes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Xiang Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Hong-Xiang  Xu and Xin Sun are co-first authors of the article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, HX., Sun, X., Yang, H. et al. Research progress of electrolytic treatment technology for organic wastewater. J Solid State Electrochem (2024). https://doi.org/10.1007/s10008-024-05871-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10008-024-05871-0

Keywords

Navigation