Skip to main content
Log in

Exchange current density at the positive electrode of lithium-ion batteries optimization using the Taguchi method

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Over the past few years, lithium-ion batteries have gained widespread use owing to their remarkable characteristics of high-energy density, extended cycle life, and minimal self-discharge rate. Enhancing the exchange current density (ECD) remains a crucial challenge in achieving optimal performance of lithium-ion batteries, where it is significantly influenced the rate of electrochemical reactions at the electrodes of a battery. To enhance the ECD of lithium-ion batteries, the Taguchi method is employed in this study. The Taguchi method is a statistical approach that allows for the efficient and systematic evaluation of a large number of experimental factors. The proposed method involves varying six input factors such as positive and negative electrode thickness, separator thickness, current collector area, and the state of charge (SOC) of each electrode; five levels were assigned for each control factor to identify the optimal conditions and maximizing the ECD at the positive electrode. Also, main effect screener analysis and sensitivity analysis were conducted to confirm Taguchi analysis results. The results show that the Taguchi method is an effective approach for optimizing the exchange current density of lithium-ion batteries. This paper shows that the separator thickness followed by the positive electrode thickness play the major role in determining the lithium-ion batteries response. The main effect screener analysis and sensitivity analysis show the same effect of the chosen control factor which validate the Taguchi analysis results. By identifying the optimal conditions, it is possible to improve the performance of lithium-ion batteries and potentially extend their use in a variety of applications. As case study, lithium-ion batteries with ECD at positive electrode of 6 A/m2 is designed and simulated using COMSOL multiphasic within a frequency range of 10 mHz to 1 kHz. Electrochemical impedance spectroscopy (EIS) analysis using is carried out. As the frequency increased, the real part of the impedance of the simulated battery relative to the ground decreased because the charge transfer mechanism shifted from ionic to electronic conductivity. Additionally, the imaginary part of the impedance of the simulated battery relative to the ground decreased at higher frequencies due to a reduction in capacitive effects, with only minor inductive effects. This study opens the door widely in front of researchers and manufactures to design a lithium-ion batteries at specific exchange current density that suits specific applications in forward and direct way instead of trial and error approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Siva Ramkumar M, Subba Rami Reddy C, Ramakrishnan A, Raja K, Pushpa S, Jose S, Jayakumar M (2022) Review on Li-ion battery with battery management system in electrical vehicle. Adv Mater Sci Eng 2022(3379574):8. https://doi.org/10.1155/2022/3379574

  2. Zhang YS, Courtier NE, Zhang Z, Liu K, Bailey JJ, Boyce AM, Richardson G, Shearing PR, Kendrick E, Brett DJL (2022) A Review of Lithium-Ion Battery Electrode Drying: Mechanisms and Metrology. Adv Energy Mater 12:2102233. https://doi.org/10.1002/aenm.202102233

    Article  CAS  Google Scholar 

  3. Zhu W, Zhang J, Luo J, Zeng C, Su H, Zhang J, Liu R, Hu E, Liu Y, Liu W-D, Chen Y, Hu W, Xu Y (2023) Ultrafast non-equilibrium synthesis of cathode materials for Li-ion batteries. Adv Mater 35:2208974. https://doi.org/10.1002/adma.202208974

    Article  CAS  Google Scholar 

  4. Abdallah EM, Morsi MA, Asnag GM, Tarabiah AE (2022) Structural, optical, thermal, and dielectric properties of carboxymethyl cellulose/sodium alginate blend/lithium titanium oxide nanoparticles: biocomposites for lithium-ion batteries applications. Int J Energy Res 46(8):10741–10757. https://doi.org/10.1002/er.7877

    Article  CAS  Google Scholar 

  5. Vendra CMR, Shelke AV, Buston JEH, Gill J, Howard D, Read E, Abaza A, Cooper B, Wen JX (2022) Numerical and experimental characterisation of high energy density 21700 lithium-ion battery fires. Process Saf Environ Protect 160:153–165

  6. Zhou L, Zuo TT, Kwok CY et al (2022) High areal capacity, long cycle life 4 V ceramic all-solid-state Li-ion batteries enabled by chloride solid electrolytes. Nat Energy 7:83–93. https://doi.org/10.1038/s41560-021-00952-0

    Article  CAS  Google Scholar 

  7. Xu J, Chen Z, Qin J, Minqiang P (2022) A lightweight and low-cost liquid-cooled thermal management solution for high energy density prismatic lithium-ion battery packs. Appl Therm Eng 203:117871. https://doi.org/10.1016/j.applthermaleng.2021.117871

  8. Liu L, Liu C, Wang M, Li B, Wang K, Fan X, Li N, Wang H, Hu S, Diao X (2023) Low self-discharge all-solid-state electrochromic asymmetric supercapacitors at wide temperature toward efficient energy storage. Chem Eng J 456:141022. https://doi.org/10.1016/j.cej.2022.141022

  9. Liu J, Duan Q, Qi K, Liu Y, Sun J, Wang Z, Wang Q (2022) Capacity fading mechanisms and state of health prediction of commercial lithium-ion battery in total lifespan. J Energy Storage 46:103910. https://doi.org/10.1016/j.est.2021.103910

  10. Bates AM, Preger Y, Torres-Castro L, Harrison KL, Harris SJ, Hewson J (2022) Are solid-state batteries safer than lithium-ion batteries? Joule 6(4):742–755. https://doi.org/10.1016/j.joule.2022.02.007

    Article  CAS  Google Scholar 

  11. Miao Y, Liu L, Zhang Y, Tan Q, Li J (2022) An overview of global power lithium-ion batteries and associated critical metal recycling. J Hazard Mater 425:127900. https://doi.org/10.1016/j.jhazmat.2021.127900

  12. Lv C, Zhou X, Zhong L, Yan C, Srinivasan M, Seh ZW, Liu C, Pan H, Li S, Wen Y, Yan Q (2022) Machine learning: an advanced platform for materials development and state prediction in lithium-ion batteries. Adv Mater 34:2101474. https://doi.org/10.1002/adma.202101474

    Article  CAS  Google Scholar 

  13. Sun Q, Cao Z, Ma Z, Zhang J, Wahyudi W, Liu G, Cheng H, Cai T, Xie E, Cavallo L, Li Q, Ming J (2023) Interfacial and interphasial chemistry of electrolyte components to invoke high-performance antimony anodes and non-flammable lithium-ion batteries. Adv Funct Mater 33:2210292. https://doi.org/10.1002/adfm.202210292

    Article  CAS  Google Scholar 

  14. Jiang Y, Xu C, Xu K, Li S, Ni J, Wang Y, Liu Y, Cai J, Lai C (2022) Surface modification and structure constructing for improving the lithium ion transport properties of PVDF based solid electrolytes. Chem Eng J 442:136245. https://doi.org/10.1016/j.cej.2022.136245

  15. Zhang C, Wang H, Wu L (2023) Life prediction model for lithium-ion battery considering fast-charging protocol. Energy 263:126109. https://doi.org/10.1016/j.energy.2022.126109

  16. Shang W, Yu W, Xiao X, Ma Y, Chen Z, Ni M, Tan P (2022) Optimizing the charging protocol to address the self-discharge issues in rechargeable alkaline Zn-Co batteries. Appl Energy 308:118366. https://doi.org/10.1016/j.apenergy.2021.118366

  17. Chen H, Zhang T, Zhang H, Tian G, Liu R, Yang J, Zhang Z (2022) Power parametric optimization of an electro-hydraulic integrated drive system for power-carrying vehicles based on the Taguchi method. Processes 10(5):867. https://doi.org/10.3390/pr10050867

    Article  CAS  Google Scholar 

  18. Al Rafei T, Yousfi Steiner N, Chrenko D (2023) Genetic algorithm and Taguchi method: an approach for better Li-ion cell model parameter identification. Batteries 9(2):72. https://doi.org/10.3390/batteries9020072

    Article  Google Scholar 

  19. Alrashdan MH (2020) MEMS piezoelectric micro power harvester physical parameter optimization, simulation, and fabrication for extremely low frequency and low vibration level applications. Microelectron J 104:104894. https://doi.org/10.1016/j.mejo.2020.104894

  20. Alrashdan MHS, Hamzah AA, Majlis BY (2018) Power density optimization for MEMS piezoelectric micro power generator below 100 Hz applications. Microsyst Technol 24:2071–2084. https://doi.org/10.1007/s00542-017-3608-1

    Article  Google Scholar 

  21. Alrashdan MHS, Ahmed MZ, Abu-Al-Aish A (2017) Modeling and optimization of frequency tunable piezoelectric micro power generator. Micro Nanosyst 9(2). https://doi.org/10.2174/1876402910666180118125520

  22. Xu X, Jiao X, Kapitanova OO, Wang J, Volkov VS, Liu Y, Xiong S (2022) Diffusion limited current density: a watershed in electrodeposition of lithium metal anode. Adv Energy Mater 12:2200244. https://doi.org/10.1002/aenm.202200244

    Article  CAS  Google Scholar 

  23. Ai W, Kirkaldy N, Jiang Y, Offer G, Wang H, Wu B (2022) A composite electrode model for lithium-ion batteries with silicon/graphite negative electrodes. J Power Sources 527:231142. https://doi.org/10.1016/j.jpowsour.2022.231142

  24. Lu Y, Zhao C-Z, Yuan H, Cheng X-B, Huang J-Q, Zhang Q (2021) Critical current density in solid-state lithium metal batteries: mechanism, influences, and strategies. Adv Funct Mater 31:2009925. https://doi.org/10.1002/adfm.202009925

    Article  CAS  Google Scholar 

  25. Liu Y, Xu X, Sadd M, Kapitanova OO, Krivchenko VA, Ban J, Wang J, Jiao X, Song Z, Song J, Xiong S, Matic A (2021) Insight into the critical role of exchange current density on electrodeposition behavior of lithium metal. Adv Sci 8:2003301. https://doi.org/10.1002/advs.202003301

    Article  CAS  Google Scholar 

  26. Colclasure AM, Tanim TR, Jansen AN, Trask SE, Dunlop AR, Polzin BJ, Bloom I, Robertson D, Flores L, Evans M, Dufek EJ, Smith K (2020) Electrode scale and electrolyte transport effects on extreme fast charging of lithium-ion cells. Electrochimica Acta 337:135854. https://doi.org/10.1016/j.electacta.2020.135854

  27. Kraft L, Habedank JB, Frank A, Rheinfeld A, Jossen A (2020) Modeling and simulation of pore morphology modifications using laser-structured graphite anodes in lithium-ion batteries. J Electrochem Soc 167(013506). https://doi.org/10.1149/2.0062001JES

  28. Zhu Y, Xie J, Pei A et al (2019) Fast lithium growth and short circuit induced by localized-temperature hotspots in lithium batteries. Nat Commun 10:2067. https://doi.org/10.1038/s41467-019-09924-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang X, Wei X, Dai H (2019) Estimation of state of health of lithium-ion batteries based on charge transfer resistance considering different temperature and state of charge. Journal of Energy Storage 21:618–631. https://doi.org/10.1016/j.est.2018.11.020

    Article  Google Scholar 

  30. Alrashdan MHS (2019) Eigen frequency, frequency response, and transient response analysis of MEMS T-shape cantilever beam piezoelectric micro-power generator about 1 KHz. International Conference on Power Generation Systems and Renewable Energy Technologies (PGSRET) 2019:1–4

    Google Scholar 

  31. Alrashdan MH (2020) Data relating to mems piezoelectric micro power harvester physical parameter optimization, for extremely low frequency and low vibration level applications. Data Br 33:106571. https://doi.org/10.1016/j.dib.2020.106571

  32. Alrashdan MHS, Hamzah AA, Majlis B (2014) Design and optimization of cantilever based piezoelectric micro power generator for cardiac pacemaker. Microsyst Technol 21(8):1607–1617

    Article  Google Scholar 

  33. Pang Q, Kwok CY, Kundu D, Liang X, Nazar LF (2019) Lightweight metallic MgB2 mediates polysulfide redox and promises high-energy-density lithium-sulfur batteries. Joule 3(1):136–148. https://doi.org/10.1016/j.joule.2018.09.024

    Article  CAS  Google Scholar 

  34. Atalay S, Sheikh M, Mariani A, Merla Y, Bower E, Widanage WD (2020) Theory of battery ageing in a lithium-ion battery: capacity fade, nonlinear ageing and lifetime prediction. J Power Sources 478:229026. https://doi.org/10.1016/j.jpowsour.2020.229026

  35. Xu M, Reichman B, Wang X (2019) Modeling the effect of electrode thickness on the performance of lithium-ion batteries with experimental validation. Energy 186:115864. https://doi.org/10.1016/j.energy.2019.115864

  36. Zhao Q, Wang R, Hu X, Wang Y, Lu G, Yang Z, Liu Q, Yang X, Pan F, Xu C (2022) Functionalized 12 μm polyethylene separator to realize dendrite-free lithium deposition toward highly stable lithium-metal batteries. Adv Sci 9:2102215. https://doi.org/10.1002/advs.202102215

    Article  CAS  Google Scholar 

  37. Wang M, Li J, He X, Wu H, Wan C (2012) The effect of local current density on electrode design for lithium-ion batteries. J Power Sources 207:127–133. https://doi.org/10.1016/j.jpowsour.2011.12.063

    Article  CAS  Google Scholar 

  38. Cheng Z, Liu M, Ganapathy S, Li C, Li Z, Zhang X, He P, Zhou H, Wagemaker M (2020) Revealing the impact of space-charge layers on the Li-ion transport in all-solid-state batteries. Joule 4(6):1311–1323. https://doi.org/10.1016/j.joule.2020.04.002

    Article  CAS  Google Scholar 

  39. Doyle M, Fuller TF, Newman J (1993) Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell. J Electrochem Soc 140(6). https://doi.org/10.1149/1.2221597

  40. Al-Gabalawy M, Hosny NS, Hussien SA (2020) Lithium-ion battery modeling including degradation based on single-particle approximations. Batteries 6(3):37. https://doi.org/10.3390/batteries6030037

    Article  CAS  Google Scholar 

  41. Ruffo R, Wessells C, Huggins RA, Cui Y (2009) Electrochemical behavior of LiCoO2 as aqueous lithium-ion battery electrodes. Electrochem Commun 11(2):247–249. https://doi.org/10.1016/j.elecom.2008.11.015

    Article  CAS  Google Scholar 

  42. Wilson JR, Cronin JS, Barnett SA, Harris SJ (2011) Measurement of three-dimensional microstructure in a LiCoO2 positive electrode. J Power Sources 196(7):3443–3447. https://doi.org/10.1016/j.jpowsour.2010.04.066

    Article  CAS  Google Scholar 

  43. Julien CM, Zaghib K, Mauger A, Groult H (2012) Enhanced electrochemical properties of LiFePO4 as positive electrode of Li-ion batteries for HEV application. Adv Chem Engineer Sci 2(3):321–329. https://doi.org/10.4236/aces.2012.23037

    Article  CAS  Google Scholar 

  44. Amine K, Wang Q, Vissers DR, Zhang Z, Rossi NA, West R (2006) Novel silane compounds as electrolyte solvents for Li-ion batteries. Electrochem Commun 8(3):429–433. https://doi.org/10.1016/j.elecom.2005.12.017

    Article  CAS  Google Scholar 

  45. Meddings N, Heinrich M, Overney F, Lee J, Ruiz V, Napolitano E, Seitz S, Hinds G, Raccichini R, Gaberšček M, Park J (2020) Application of electrochemical impedance spectroscopy to commercial Li-ion cells: a review. J Power Sources 480:228742. https://doi.org/10.1016/j.jpowsour.2020.228742

  46. Brown S, Mellgren N, Vynnycky M, Lindbergh G (2008) Impedance as a tool for investigating aging in lithium-ion porous electrodes. II. Positive Electrode Examination. Electrochim Acta 155:A320

  47. Abraham DP, Kawauchi S, Dees DW (2008) Modeling the impedance versus voltage characteristics of LiNi0.08Co0.15Al0.05O2. Electrochim Acta 53:2121–2129

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd H. S. Alrashdan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alrashdan, M.H.S. Exchange current density at the positive electrode of lithium-ion batteries optimization using the Taguchi method. J Solid State Electrochem 28, 213–227 (2024). https://doi.org/10.1007/s10008-023-05672-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05672-x

Keywords

Navigation