Skip to main content
Log in

Thermal, electrical and electrochemical properties of ionic liquid-doped poly(ethylene oxide)–LiTDI polymer electrolytes for Li-ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In the present study, we report the synthesis and characterisation of solid polymer electrolytes (SPEs) based on polymer poly(ethylene oxide) (PEO), salt lithium 4,5-dicyano-2-(trifluoromethyl)imidazole (LiTDI) and different amounts of added ionic liquid (IL) 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMImTFSI) via a solution casting technique, and we investigate the use of these electrolytes in solid-state Li-ion batteries (LIBs). Thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), complex impedance spectroscopy, linear sweep voltammetry (LSV) and electrochemical studies exhibit promising characteristics of the prepared SPEs suitable for application in LIBs. The optimum conducting composition (OCC) PEO20–LiTDI–40 wt% EMImTFSI SPEs shows high thermal stability (i.e., up to 300 °C), high ionic conductivity (∼1.78 × 10−4 S/cm at 60 °C) and a high electrochemical stability window (∼ 4.2 V). The Li/PEO20–LiTDI–40 wt% EMImTFSI/LiFePO4 coin-type cell cycled at 0.1 C shows initial discharge capacity of about 161 mAh g−1, and retains capacity of 144.5 mAh g−1 on the 50th cycle. The above results suggest that PEO20–LiTDI–40 wt% EMImTFSI SPE is a suitable separator for LIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Research data policy and data availability statement

The data given in this article will be supported by experimental data in figures and references given in this article.

References

  1. Filho S, Oliveira L, Oliveira R, Faez R, Martins V, Camilo F (2022) Free-standing solid polymer electrolytes based on elastomeric material and ionic liquids for safer lithium-ion battery applications. Solid State Ionic 379:115901

    Article  Google Scholar 

  2. Shahjalal M, Roy PK, Shams T, Fly A, Chowdhury JI, Ahmed MR, Liu K (2022) A review on second-life of Li-ion batteries: prospects, challenges, and issues. Energy 241:122881

    Article  CAS  Google Scholar 

  3. Ye F, Liao K, Ran R, Shao Z (2020) Recent advances in filler engineering of polymer electrolytes for solid-state Li-ion batteries: A review. Energy Fuels 34:9189–9207

    Article  CAS  Google Scholar 

  4. Yu X, Manthiram A (2021) A review of composite polymer-ceramic electrolytes for lithium batteries. Energy Storage Mater 34:282–300

    Article  Google Scholar 

  5. Polu AR, Rhee HW (2016) Effect of TiO2 nanoparticles on structural, thermal, mechanical and ionic conductivity studies of PEO12–LiTDI solid polymer electrolyte. J Ind Eng Chem 37:347–353

    Article  CAS  Google Scholar 

  6. Polu AR, Rhee HW, Reddy MJK, Shanmugharaj AM, Ryu SH, Kim DK (2017) Effect of POSS-PEG hybrid nanoparticles on cycling performance of polyether-LiDFOB based solid polymer electrolytes for all solid-state Li-ion battery applications. J Ind Eng Chem 45:68–77

    Article  CAS  Google Scholar 

  7. Polu AR, Rhee HW (2015) Nanocomposite solid polymer electrolytes based on poly(ethylene oxide)/POSS-PEG (n = 13.3) hybrid nanoparticles for lithium ion batteries. J Ind Eng Chem 31:323–329

    Article  CAS  Google Scholar 

  8. Polu AR, Kumar R, Rhee HW (2015) Magnesium ion conducting solid polymer blend electrolyte based on biodegradable polymers and application in solid-state batteries. Ionics 21:125–132

    Article  CAS  Google Scholar 

  9. Polu AR, Rhee HW (2017) Ionic liquid doped PEO-based solid polymer electrolytes for lithium-ion polymer batteries. Int J Hydrogen Energy 42:7212–7219

    Article  CAS  Google Scholar 

  10. Polu AR, Kim DK, Rhee HW (2015) Poly(ethylene oxide)-lithium difluoro (oxalato) borate new solid polymer electrolytes: ion–polymer interaction, structural, thermal, and ionic conductivity studies. Ionics 21:2771–2780

    Article  CAS  Google Scholar 

  11. Berhaut CL, Dedryvere R, Timperman L, Schmidt G, Lemordant D, Anouti M (2019) A new solvent mixture for use of LiTDI as electrolyte salt in Li-ion batteries. Electrochim Acta 305:534–546

    Article  CAS  Google Scholar 

  12. Polu AR, Rhee HW, Kim DK (2015) New solid polymer electrolytes (PEO20–LiTDI–SN) for lithium batteries: structural, thermal and ionic conductivity studies. J Mater Sci: Mater Electron 26:8548–8554

    CAS  Google Scholar 

  13. Forsyth M, Porcarelli L, Wang X, Goujon N, Mecerretes D (2019) Innovative electrolytes based on ionic liquids and polymers for next-generation solid-state batteries. Acc Chem Res 52:686–694

    Article  CAS  Google Scholar 

  14. Yang G, Song Y, Wang Q, Zhang L, Deng L (2020) Review of ionic liquids containing, polymer/inorganic hybrid electrolytes for lithium metal batteries. Mater Design 190:108563

    Article  CAS  Google Scholar 

  15. Zhang Y, Huo QY, Du PP, Wang LZ, Zhang AQ, Song YH, Lv Y, Li GY (2012) Advances in new cathode material LiFePO4 for lithium-ion batteries. Synthetic Met 162:1315–1326

    Article  CAS  Google Scholar 

  16. Ali NM, Kareem AA, Polu AR (2022) Effect of glycerin on electrical and thermal properties of PVA/copper sulphate gel polymer electrolytes. J Inorg Organomet Polym Mater 32:4070–4076

    Article  CAS  Google Scholar 

  17. Rajendran S, Kannan R, Mahendran O (2001) Ionic conductivity studies in poly(methylmethacrylate)–polyethlene oxide hybrid polymer electrolytes with lithium salts. J Power Sources 96:406–410

    Article  CAS  Google Scholar 

  18. Ramesh S, Yuen TF, Shen CJ (2008) Conductivity and FTIR studies on PEO–LiX [X: CF3SO3−, SO42−] polymer electrolytes. Spectrochim Acta Part A 69:670–675

    Article  CAS  Google Scholar 

  19. Tang Z, Wang J, Chen Q, He W, Shen C, Mao XX, Zhang J (2007) A novel PEO-based composite polymer electrolyte with absorptive glass mat for Li-ion batteries. Electrochim Acta 52:6638–6643

    Article  CAS  Google Scholar 

  20. Sundar M, Selladurai S (2006) Effect of fillers on magnesium–poly(ethylene oxide) solid polymer electrolyte. Ionics 12:281–286

    Article  CAS  Google Scholar 

  21. Niedzicki L, Zukowska GZ, Bukowska M, Szczecinski P, Grugeon S, Laruelle S, Armand M, Panero S, Scrosati B, Marcinek M, Wieczorek W (2010) New type of imidazole-based salts designed specifically for lithium-ion batteries. Electrochim Acta 55:1450–1454

    Article  CAS  Google Scholar 

  22. Frech R, Chintapalli S, Bruce PG, Vincent CA (1999) Crystalline and Amorphous Phases in the Poly(ethylene oxide)−LiCF3SO3 System. Macromolecules 32:808–813

    Article  CAS  Google Scholar 

  23. Ibrahim S, Yassin MM, Ahmad R, Johan MR (2011) Effects of various LiPF6 salt concentrations on PEO-based solid polymer electrolytes. Ionics 17:399–405

    Article  CAS  Google Scholar 

  24. Chaurasia SK, Singh RK, Chandra S (2011) Dielectric relaxation and conductivity studies on (PEO: LiClO4) polymer electrolyte with added ionic liquid [BMIM][PF6]: Evidence of ion–ion interaction. J Polym Sci Part B Polym Phys 49:291–300

    Article  CAS  Google Scholar 

  25. Kumar Y, Hashmi SA, Pandey GP (2011) Ionic liquid mediated magnesium ion conduction in poly(ethylene oxide) based polymer electrolyte. Electrochim Acta 56:3864–3873

    Article  CAS  Google Scholar 

  26. Kiefer J, Fries J, Leipertz A (2007) Experimental vibrational study of imidazolium-based ionic liquids: Raman and infrared spectra of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide and 1-ethyl-3-methylimidazolium ethylsulfate. Appl Spectrosc 61:1306–1311

    Article  CAS  Google Scholar 

  27. Jeyapandian M, Lavina S, Thayumanasundaram S, Ohno H, Negro E, Noto VD (2010) New hybrid inorganic–organic polymer electrolytes based on Zr(O(CH2)3CH3)4, glycerol and EMIm-TFSI ionic liquid. J Power Sources 195:341–353

    Article  CAS  Google Scholar 

  28. Vadhva P, Hu J, Johnson MJ, Stocker R, Braglia M, Brett DJL, Rettie AJE (2021) Electrochemical impedance spectroscopy for all-solid-state batteries: Theory, methods and future outlook. Chem Electro Chem 8:1930–1947

    CAS  Google Scholar 

  29. Liu P, Counihan MJ, Zhu Y, Connel JG, Sharon D, Patel SN, Redfern PC, Zapol P, Markovic NM, Nealey PF, Curtiss LA, Tepavcevic S (2022) Increasing ionic conductivity of poly(ethylene oxide) by reaction with Metallic Li. Adv Energy Sustain Res 3:2100142

    Article  Google Scholar 

  30. Polu AR, Rhee HW (2016) The effects of LiTDI salt and POSS-PEG (n = 4) hybrid nanoparticles on crystallinity and ionic conductivity of PEO based solid polymer electrolytes. Sci Adv Mater 8:931–940

    Article  CAS  Google Scholar 

  31. Vries HD, Jeong S, Passerini S (2015) Ternary polymer electrolytes incorporating pyrrolidinium-imide ionic liquids. RSC Adv 5:13598–13606

    Article  Google Scholar 

  32. Singh PK, Kim KW, Rhee HW (2008) Electrical, optical and photoelectrochemical studies on a solid PEO-polymer electrolyte doped with low viscosity ionic liquid. Electrochem Commun 10:1769–1772

    Article  CAS  Google Scholar 

  33. Shin JH, Henderson WA, Scaccia S, Prosini PP, Passerini S (2006) Solid-state Li/LiFePO4 polymer electrolyte batteries incorporating an ionic liquid cycled at 40 °C. J Power Sources 156:560–566

    Article  CAS  Google Scholar 

  34. Lago N, Calvo OG, Amo JMLD, Rojo T, Armand M (2015) All-solid-state lithium-ion batteries with grafted ceramic nanoparticles dispersed in solid polymer electrolytes. Chem Sus Chem 8:3039–3043

    Article  CAS  Google Scholar 

  35. Kim DG, Shim J, Lee JH, Kwon SJ, Baik JH, Lee JC (2013) Preparation of solid-state composite electrolytes based on organic/inorganic hybrid star-shaped polymer and PEG-functionalized POSS for all-solid-state lithium battery applications. Polymer 54:5812–5820

    Article  CAS  Google Scholar 

  36. He R, Echeverri M, Ward D, Zhu Y, Kyu T (2016) Highly conductive solvent-free polymer electrolyte membrane for lithium-ion batteries: Effect of prepolymer molecular weight. J Membr Sci 498:208–217

    Article  CAS  Google Scholar 

  37. Pohl B, Hiller MM, Seidel SM, Grunebaum M, Wiemhofer HD (2015) Nitrile functionalized disiloxanes with dissolved LiTFSI as lithium-ion electrolytes with high thermal and electrochemical stability. J Power Sources 274:629–635

    Article  CAS  Google Scholar 

  38. Zhao Y, Wu C, Peng G, Chen X, Yao X, Bai Y, Wu F, Chen S, Xu X (2016) A new solid polymer electrolyte incorporating Li10GeP2S12 into a polyethylene oxide matrix for all-solid-state lithium batteries. J Power Sources 301:7–53

    Article  Google Scholar 

  39. Abdulnabi RJ, Kareem AA (2022) Fabrication and characterization of high-performance crosslinked PVA/PMDA doped with H2SO4. Iraqi J Sci 63:2006–2016

    Article  Google Scholar 

  40. Ali NM, Kareem AA (2022) Ionic conductivity enhancement for PVA/20wt.% CuSO4 gel polymer electrolyte by using glycerine. Chalcogenide Lett 19:217–225

    Article  CAS  Google Scholar 

  41. Hasan AA (2019) A.C conductivity and dielectric properties of (PVA/PEO) blends doped with MWCNTs. Iraqi J Phy 14:64–72

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aseel A. Kareem.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 422 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polu, A.R., Kareem, A.A. & Rasheed, H.K. Thermal, electrical and electrochemical properties of ionic liquid-doped poly(ethylene oxide)–LiTDI polymer electrolytes for Li-ion batteries. J Solid State Electrochem 27, 409–416 (2023). https://doi.org/10.1007/s10008-022-05333-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-022-05333-5

Keywords

Navigation