Skip to main content
Log in

Physical and electrochemical chattels of phosphonium ionic liquid-based solid and gel-polymer electrolyte for lithium secondary batteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, a methodical study on the influence of ionic conductivity on polymer electrolyte with different weight percentages of ionic liquid and plasticizers had been investigated in detail. Solution casting method has been employed for preparing polymer electrolyte (PE) blend having poly(vinylidenefluoride-co-hexafluoropropylene) P(VdF-co-HFP) as polymer, trihexyltetradecylphosphonium bis(trifluoromethylsulfonyl) amide [P14,6,6,6][Tf2N] as ionic liquid and ethylene carbonate (EC) as well as propylene carbonate (PC) in 1: 1 ratio as plasticizers. The polymer electrolyte has been found out stable up to 450 °C, as measured from Thermal gravimetric analysis (TGA). Impedance spectral analysis reveals that the ionic conductivity of SPEs is 3.209 × 10–6 S/cm at 303 K with 25 wt% of ionic liquid. The addition of plasticizers (EC + PC (60 wt%)) results in two orders of magnitude of higher ionic conductivity (3.40 × 10–4 S/cm at 303 K), than that of SPEs. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM) are performed to study the physico-chemical characteristics of polymer electrolytes. Electrochemical stability, potential window and discharge characteristics of the coin cell containing the electrolytes and LiFePO4 electrode were investigated using linear and cyclic voltammetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Osinska, M. Walkowiak, A. Zalewska, T. Jesionowski, Study of the role of ceramic filler in composite gel electrolytes based on microporous polymer membranes. J. Membr. Sci. 326(2), 582–588 (2009). https://doi.org/10.1016/j.memsci.2008.10.036

    Article  CAS  Google Scholar 

  2. Y. Xia, T. Fujieda, K. Tatsumi, P.P. Prosini, T. Sakai, Thermal and electrochemical stability of cathode materials in solid polymer electrolyte. J. Power Sources 92(1–2), 234–243 (2001). https://doi.org/10.1016/S0378-7753(00)00533-4

    Article  CAS  Google Scholar 

  3. G. Li, Z. Li, P. Zhang, H. Zhang, Y. Wu, Research on a gel polymer electrolyte for Li-ion batteries. Pure Appl. Chem. 80(11), 2553–2563 (2008). https://doi.org/10.1351/pac200880112553

    Article  CAS  Google Scholar 

  4. C.S. Kim, S.M. Oh, Importance of donor number in determining solvating ability of polymers and transport properties in gel-type polymer electrolytes. Electrochim. Acta 45(13), 2101–2109 (2000). https://doi.org/10.1016/S0013-4686(99)00426-0

    Article  CAS  Google Scholar 

  5. F.B. Dias, L. Plomp, J.B. Veldhuis, Trends in polymer electrolytes for secondary lithium batteries. J. Power Sources 88(2), 169–191 (2000). https://doi.org/10.1016/S0378-7753(99)00529-7

    Article  CAS  Google Scholar 

  6. O.V. Bushkova, S.E. Popov, T.V. Yaroslavtseva, V.M. Zhukovsky, A.E. Nikiforov, Ion–molecular and ion–ion interactions in solvent-free polymer electrolytes based on amorphous butadiene—acrylontrile copolymer and LiAsF6. Solid State Ion. 178(35–36), 1817–1830 (2008). https://doi.org/10.1016/j.ssi.2007.11.023

    Article  CAS  Google Scholar 

  7. S. Ferrari, E. Quartarone, P. Mustarelli, A. Magistris, M. Fagnoni, S. Protti, C. Gerbaldi, A. Spinella, Lithium ion conducting PVdF-HFP composite gel electrolytes based on N-methoxyethyl-N-methylpyrrolidinium bis (trifluoromethanesulfonyl)-imide ionic liquid. J. Power Sources 195(2), 559–566 (2010). https://doi.org/10.1016/j.jpowsour.2009.08.015

    Article  CAS  Google Scholar 

  8. J.P. Tafur, F. Santos, A.J. Romero, Influence of the ionic liquid type on the gel polymer electrolytes properties. Membranes 5(4), 752–771 (2015). https://doi.org/10.3390/membranes5040752

    Article  CAS  Google Scholar 

  9. D. Saikia, Y.W. Chen-Yang, Y.T. Chen, Y.K. Li, S.I. Lin, Li NMR spectroscopy and ion conduction mechanism of composite gel polymer electrolyte: A comparative study with variation of salt and plasticizer with filler. Electrochim Acta 54(4), 1218–1227 (2009). https://doi.org/10.1016/j.electacta.2008.09.001

    Article  CAS  Google Scholar 

  10. S.K. Chaurasia, R.K. Singh, Crystallization behaviour of a polymeric membrane based on the polymer PVdF–HFP and the ionic liquid BMIMBF 4. RSC Adv. 4(92), 50914–50924 (2014). https://doi.org/10.1039/C4RA07085B

    Article  CAS  Google Scholar 

  11. D. Saikia, Y.W. Chen-Yang, Y.T. Chen, Y.K. Li, S.I. Lin, Investigation of ionic conductivity of composite gel polymer electrolyte membranes based on P (VDF-HFP), LiClO4 and silica aerogel for lithium ion battery. Desalination 234(1–3), 24–32 (2008). https://doi.org/10.1016/j.desal.0000.00.000

    Article  CAS  Google Scholar 

  12. L.N. Sim, S.R. Majid, A.K. Arof, Effects of 1–butyl–3–methyl imidazolium trifluoromethanesulfonate ionic liquid in poly (ethyl methacrylate)/poly (vinylidenefluoride-co-hexafluoropropylene) blend based polymer electrolyte system. Electrochim Acta 123, 190–197 (2014). https://doi.org/10.1016/j.electacta.2014.01.017

    Article  CAS  Google Scholar 

  13. T. Michot, A. Nishimoto, M. Watanabe, Electrochemical properties of polymer gel electrolytes based on poly (vinylidene fluoride) copolymer and homopolymer. Electrochim Acta 45(8–9), 1347–1360 (2000). https://doi.org/10.1016/S0013-4686(99)00343-6

    Article  CAS  Google Scholar 

  14. B.G. Soares, K. Pontes, J.A. Marins, L.F. Calheiros, S. Livi, G.M. Barra, Poly (vinylidene fluoride-co-hexafluoropropylene)/polyaniline blends assisted by phosphonium–based ionic liquid: dielectric properties and β-phase formation. Eur. Polym. J. 73, 65–74 (2015). https://doi.org/10.1016/j.eurpolymj.2015.10.003

    Article  CAS  Google Scholar 

  15. R.E. Ramírez, L.C. Torres-González, E.M. Sánchez, Electrochemical aspects of asymmetric phosphonium ionic liquids. J. Electrochem. Soc. 154(2), 229–233 (2007). https://doi.org/10.1149/1.2404789

    Article  CAS  Google Scholar 

  16. E.H. Cha, J.Y. Mun, E. Cho, T.E. Yim, Y.G. Kim, S.M. Oh, S.A. Lim, J.W. Lim, The corrosion study of al current collector in phosphonium ionic liquid as solvent for lithium ion battery. J. Korean Electrochem. Soc. 14(3), 152–156 (2011). https://doi.org/10.5229/JKES.2011.14.3.152

    Article  CAS  Google Scholar 

  17. M. Taige, D. Hilbert, T.J. Schubert, Mixtures of ionic liquids as possible electrolytes for lithium ion batteries. Int. J. Res. Phys. Chem. Chem. Phys. 226(2), 129–139 (2012). https://doi.org/10.1524/zpch.2012.0161

    Article  CAS  Google Scholar 

  18. H.L. WuTY, P.R. Chen, J.W. Liao, Ionic conductivity and transporting properties in LiTFSI-doped bis (trifluoromethanesulfonyl) imide-based ionic liquid electrolyte. Int. J. Electrochem. Sci. 8, 2606–2624 (2013)

    Google Scholar 

  19. S.S. Keskar, L.A. Edye, C.M. Fellows, W.O.S. Doherty, ATR-FTIR measurement of biomass components in phosphonium ionic liquids. J. Wood Chem. Technol. 32, 175–186 (2012). https://doi.org/10.1080/02773813.2011.631718

    Article  CAS  Google Scholar 

  20. S.R. Sarda, W.N. Jadhav, A.S. Shete, K.B. Dhopte, S.M. Sadawarte, P.J. Gadge, R.P. Pawar, Phosphonium ionic liquid–catalyzed Michael addition of mercaptans to α, β-unsaturated ketones. Synth. Commun. 40(14), 2178–2184 (2010). https://doi.org/10.1080/00397910903221050

    Article  CAS  Google Scholar 

  21. J.W. Vaughan, D. Dreisinger, J. Haggins, Density, viscosity, and conductivity of tetraalkyl phosphonium ionic liquids. ECS Trans. 2(3), 381–392 (2006). https://doi.org/10.1149/1.2196027

    Article  CAS  Google Scholar 

  22. A.F. Ferreira, P.N. Simoes, A.G. Ferreira, Quaternary phosphonium-based ionic liquids: thermal stability and heat capacity of the liquid phase. J. Chem. Thermodyn. 45(1), 16–27 (2012). https://doi.org/10.1016/j.jct.2011.08.019

    Article  CAS  Google Scholar 

  23. M. Nadherna, J. Reiter, J. Moskon, R. Dominko, Lithium bis (fluorosulfonyl) imide–PYR14TFSI ionic liquid electrolyte compatible with graphite. J. Power Sources 196(18), 7700–7706 (2011). https://doi.org/10.1016/j.jpowsour.2011.04.033

    Article  CAS  Google Scholar 

  24. P.A. Thomas, B.B. Marvey, Room temperature ionic liquids as green solvent alternatives in the metathesis of oleochemical feedstocks. Molecules 21(2), 184 (2016). https://doi.org/10.3390/molecules21020184

    Article  CAS  Google Scholar 

  25. A.J. Rennie, N. Sanchez-Ramirez, R.M. Torresi, P.J. Hall, Ether-bond-containing ionic liquids as supercapacitor electrolytes. J Phys Chem Lett 4(17), 2970–2974 (2013). https://doi.org/10.1021/jz4016553

    Article  CAS  Google Scholar 

  26. R. Zhang, Y. Chen, R. Montazami, Ionic liquid-doped gel polymer electrolyte for flexible lithium-ion polymer batteries. Materials 8(5), 2735–2748 (2015). https://doi.org/10.3390/ma8052735

    Article  CAS  Google Scholar 

  27. S.K. Chaurasia, R.K. Singh, S. Chandra, Thermal stability, complexing behavior, and ionic transport of polymeric gel membranes based on polymer PVdF-HFP and ionic liquid,[BMIM][BF4]. J. Phys. Chem. B 117(3), 897–906 (2013). https://doi.org/10.1021/jp307694q

    Article  CAS  Google Scholar 

  28. P.K. Singh, K.C. Sabin, X. Chen, Ionic liquidsolid polymer electrolyte blends for supercapacitor applications. Polym. Bull. 73, 255–263 (2016). https://doi.org/10.1007/s00289-015-1484-3

    Article  CAS  Google Scholar 

  29. M. Wang, S.A. Vail, A.E. Keirstead, M. Marquez, D. Gust, A.A. Garcia, Preparation of photochromic poly (vinylidene fluoride-co-hexafluoropropylene) fibers by electrospinning. Polymer 50(16), 3974–3980 (2009). https://doi.org/10.1016/j.polymer.2009.06.044

    Article  CAS  Google Scholar 

  30. A.H. Battez, M. Bartolome, D. Blanco, J.L. Viesca, A. Fernandez-Gonzalez, R. Gonzalez, Phosphonium cation-based ionic liquids as neat lubricants: physicochemical and tribological performance. Tribol. Int. 95, 118–131 (2016). https://doi.org/10.1016/j.triboint.2015.11.015

    Article  CAS  Google Scholar 

  31. M. Dobbelin, I. Azcune, M. Bedu, A. Ruiz de Luzuriaga, A. Genua, V. Jovanovski, G. Cabanero, I. Odriozola, Synthesis of pyrrolidinium-based poly (ionic liquid) electrolytes with poly (ethylene glycol) side chains. Chem. Mater. 24(9), 1583–1590 (2012). https://doi.org/10.1021/cm203790z

    Article  CAS  Google Scholar 

  32. A.R. Polu, D.K. Kim, H.W. Rhee, Poly (ethylene oxide)-lithium difluoro (oxalato) borate new solid polymer electrolytes: ion–polymer interaction, structural, thermal, and ionic conductivity studies. Ionics 21(10), 2771–2780 (2015). https://doi.org/10.1007/s11581-015-1474-1483

    Article  CAS  Google Scholar 

  33. F. Deng, X. Wang, D. He, J. Hu, C. Gong, Y.S. Ye, X. Xie, Z. Xue, Microporous polymer electrolyte based on PVDF/PEO star polymer blends for lithium ion batteries. J. Membr. Sci. 491, 82–89 (2015). https://doi.org/10.1016/j.memsci.2015.05.021

    Article  CAS  Google Scholar 

  34. M. Ravi, S. Song, J. Wang, T. Wang, R. Nadimicherla, Ionic liquid incorporated biodegradable gel polymer electrolyte for lithium ion battery applications. J. Mater. Sci.: Mater. Electron. 27(2), 1370–1377 (2016). https://doi.org/10.1007/s10854-015-3899-x

    Article  CAS  Google Scholar 

  35. J.H. Shin, W.A. Henderson, C. Tizzani, S. Passerini, S.S. Jeong, K.W. Kim, Characterization of solvent-free polymer electrolytes consisting of ternary PEO–LiTFSI–PYR14 TFSI. J. Electrochem. Soc. 153(9), A1649-1654 (2006). https://doi.org/10.1149/1.2211928

    Article  CAS  Google Scholar 

  36. K. Tsunashima, F. Yonekawa, M. Kikuchi, M. Sugiya, Tributylmethylphosphonium Bis (trifluoromethylsulfonyl) amide as an effective electrolyte additive for lithium secondary batteries. J. Electrochem. Soc. 157(11), A1274-1278 (2010). https://doi.org/10.1149/1.3490662

    Article  CAS  Google Scholar 

  37. K. Xu, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104(10), 4303–4418 (2004). https://doi.org/10.1021/cr030203g

    Article  CAS  Google Scholar 

  38. S. Seki, Y. Ohno, Y. Mita, N. Serizawa, K. Takei, H. Miyashiro, Imidazolium-based room-temperature ionic liquid for lithium secondary batteries: relationships between lithium salt concentration and battery performance characteristics. ECS Electrochem. Lett. 1(6), A77 (2012). https://doi.org/10.1149/2.003206eel

    Article  CAS  Google Scholar 

  39. A. Swiderska-Mocek, Electrolyte based on 1-ethyl-3-vinylimidazolium bis (trifluoromethanesulphonyl) imide for Li-ion batteries. Electrochim Acta 132, 504–511 (2014). https://doi.org/10.1016/j.electacta.2014.03.185

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author M. Sivakumar gratefully acknowledges for the financial support to carry out this work by University Grants Commission (UGC), New Delhi, Govt. India, under major research project (F.No.41-839/2012(SR)). Also, all the authors gratefully acknowledge for extending the analytical facilities in the Department of Physics, Alagappa University under the PURSE programme, sponsored by Department of Science and Technology (DST) New Delhi, Govt. of India and Ministry of Human Resource Development RUSA- Phase 2.0 Grant sanctioned vide Lt.No.F-24-51/2014 U Policy (TN Multi Gen), Dept. of Education, Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sivakumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muthupradeepa, R., Sivakumar, M., Subadevi, R. et al. Physical and electrochemical chattels of phosphonium ionic liquid-based solid and gel-polymer electrolyte for lithium secondary batteries. J Mater Sci: Mater Electron 31, 22933–22944 (2020). https://doi.org/10.1007/s10854-020-04820-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04820-7

Navigation