Skip to main content
Log in

Electrodeposition of nanostructured γ-MnO2 film for photodegradation of Rhodamine B

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this work, we report the results of the electrodeposition of MnO2 film on stainless steel (SS) electrode in aqueous MnSO4 solution which was used as photocatalyst to degrade the Rhodamine B (RhB). Different techniques such as field emission gun scanning electron microscopy (FEG-SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), X-ray diffraction (XRD), Braunauer Emett and Teller (BET), and UV-visible diffuse reflectance spectroscopy (UV-vis DRS) were used to characterize the deposited MnO2 film. It was found that MnO2 is electrodeposited as a γ-MnO2 nanoparticle film with a low rate of crystallinity and high specific surface area of about 140 m2 g−1. The particle size is less than 20 nm. In addition, the diffuse reflectance measurements show that the γ-MnO2 presents a direct band gap of about 1.41 eV. The Mott-Schottky plot confirms that γ-MnO2 is a n-type semiconductor with the flat band potential VFB = 0.016 V vs. Ag/AgCl and the electron concentration ND = 0.8 × 1020 cm−3. The conduction and valence energy band values were estimated at Ec = 4.498 eV and Ev = 5.908 eV, respectively. It was shown also that these films exhibit good ability for the degradation of RhB especially under visible light irradiation. Indeed, degradation rates of about 90 and 55% were obtained after 60 min of visible and UV light irradiation, respectively. Finally, the degradation process mechanism of RhB is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Zhao S, Li J, Wang L, Wang X (2010) Degradation of rhodamine B and safranin-T by MoO3: CeO2 nanofibers and air using a continuous mode. CLEAN–Soil, Air, Water 38:268–274

  2. Konstantinou IK, Albanis TA (2004) TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl Catal B Environ 49(1):1–14. https://doi.org/10.1016/j.apcatb.2003.11.010

    Article  CAS  Google Scholar 

  3. Houas A, Lachheb H, Ksibi M, Elaloui E, Guillard C, Herrmann J-M (2001) Photocatalytic degradation pathway of methylene blue in water. Appl Catal B Environ 31(2):145–157. https://doi.org/10.1016/S0926-3373(00)00276-9

    Article  CAS  Google Scholar 

  4. Zhang H, Duan L, Zhang D (2006) Decolorization of methyl orange by ozonation in combination with ultrasonic irradiation. J Hazard Mater 138(1):53–59. https://doi.org/10.1016/j.jhazmat.2006.05.034

    Article  CAS  PubMed  Google Scholar 

  5. Stylidi M, Kondarides DI, Verykios XE (2003) Pathways of solar light-induced photocatalytic degradation of azo dyes in aqueous TiO2 suspensions. Appl Catal B Environ 40(4):271–286. https://doi.org/10.1016/S0926-3373(02)00163-7

    Article  CAS  Google Scholar 

  6. Makowski A, Wardas W (2001) Photocatalytic degradation of toxins secreted to water by cyanobacteria and unicellular algae and photocatalytic degradation of the cells of selected microorganisms. Curr Top Biophys 25:19–25

  7. Weidenkaff A, Reller A, Wokaun A, Steinfeld A (2000) Thermogravimetric analysis of the ZnO/Zn water splitting cycle. Thermochim Acta 359(1):69–75. https://doi.org/10.1016/S0040-6031(00)00508-6

    Article  CAS  Google Scholar 

  8. Chan Y-L, Pung S-Y, Sreekantan S, Yeoh F-Y (2016) Photocatalytic activity of β-MnO2 nanotubes grown on PET fibre under visible light irradiation. J Exp Nanosci 11(8):603–618. https://doi.org/10.1080/17458080.2015.1102342

    Article  CAS  Google Scholar 

  9. M. D. C. Cotto-Maldonado, Heterogeneous catalysis applied to advanced oxidation processes (AOPs) for degradation of organic pollutants, 2012

  10. Cotto-Maldonado MDC, Campo T, Elizalde E, Gomez-Martínez A, Morant C, Márquez F (2013) Photocatalytic degradation of Rhodamine-B under UV-visible light irradiation using different nanostructured catalysts. Am Chem Sci J 3:178–202

    Article  Google Scholar 

  11. Das M, Bhattacharyya KG (2014) Oxidation of rhodamine B in aqueous medium in ambient conditions with raw and acid-activated MnO2, NiO, ZnO as catalysts. J Mol Catal A Chem 391:121–129. https://doi.org/10.1016/j.molcata.2014.04.019

    Article  CAS  Google Scholar 

  12. E. TC, Photocatalytic degradation of rhodamine-B under UV-visible light irradiation using different nanostructured catalysts, 2013

  13. Ai Z, Zhang L, Kong F, Liu H, Xing W, Qiu J (2008) Microwave-assisted green synthesis of MnO2 nanoplates with environmental catalytic activity. Mater Chem Phys 111(1):162–167. https://doi.org/10.1016/j.matchemphys.2008.03.043

    Article  CAS  Google Scholar 

  14. Chan YL, Pung SY, Hussain NS, Sreekantan S, Yeoh FY (2013) Photocatalytic degradation of rhodamine B using MnO2 and ZnO nanoparticles. In: Materials Science Forum, pp 167–174

    Google Scholar 

  15. Cheng J-H, Shao G, Yu H-J, Xu J-J (2010) Excellent catalytic and electrochemical properties of the mesoporous MnO2 nanospheres/nanosheets. J Alloys Compd 505(1):163–167. https://doi.org/10.1016/j.jallcom.2010.05.169

    Article  CAS  Google Scholar 

  16. Cui H-J, Huang H-Z, Yuan B, Fu M-L (2015) Decolorization of RhB dye by manganese oxides: effect of crystal type and solution pH. Geochem Trans 16:1

    Article  CAS  Google Scholar 

  17. Liang S, Teng F, Bulgan G, Zong R, Zhu Y (2008) Effect of phase structure of MnO2 nanorod catalyst on the activity for CO oxidation. J Phys Chem C 112(14):5307–5315. https://doi.org/10.1021/jp0774995

    Article  CAS  Google Scholar 

  18. Liu C, Pan D, Tang X, Hou M, Zhou Q, Zhou J (2016) Degradation of rhodamine B by the α-MnO2/peroxymonosulfate system. Water Air Soil Pollut 227:1–10

    Article  CAS  Google Scholar 

  19. Sun H, Xu K, Huang M, Shang Y, She P, Yin S, Liu Z (2015) One-pot synthesis of ultrathin manganese dioxide nanosheets and their efficient oxidative degradation of rhodamine B. Appl Surf Sci 357:69–73. https://doi.org/10.1016/j.apsusc.2015.08.258

    Article  CAS  Google Scholar 

  20. Sun S, Wang W, Shang M, Ren J, Zhang L (2010) Efficient catalytic oxidation of tetraethylated rhodamine over ordered mesoporous manganese oxide. J Mol Catal A Chem 320(1-2):72–78. https://doi.org/10.1016/j.molcata.2010.01.006

    Article  CAS  Google Scholar 

  21. Yu C, Li G, Wei L, Fan Q, Shu Q, Jimmy CY (2014) Fabrication, characterization of β-MnO2 microrod catalysts and their performance in rapid degradation of dyes of high concentration. Catal Today 224:154–162. https://doi.org/10.1016/j.cattod.2013.11.029

    Article  CAS  Google Scholar 

  22. Zhang H, Chen W-R, Huang C-H (2008) Kinetic modeling of oxidation of antibacterial agents by manganese oxide. Environ Sci Technol 42(15):5548–5554. https://doi.org/10.1021/es703143g

    Article  CAS  PubMed  Google Scholar 

  23. Zhang W, Yang Z, Wang X, Zhang Y, Wen X, Yang S (2006) Large-scale synthesis of β-MnO2 nanorods and their rapid and efficient catalytic oxidation of methylene blue dye. Catal Commun 7(6):408–412. https://doi.org/10.1016/j.catcom.2005.12.008

    Article  CAS  Google Scholar 

  24. Baral A, Das DP, Minakshi M, Ghosh MK, Padhi DK (2016) Probing environmental remediation of RhB organic dye using α-MnO2 under visible-light irradiation: structural, photocatalytic and mineralization studies. Chem Select 1(14):4277–4285. https://doi.org/10.1002/slct.201600867

    Article  CAS  Google Scholar 

  25. Messaoudi B, Joiret S, Keddam M, Takenouti H (2001) Anodic behaviour of manganese in alkaline medium. Electrochim Acta 46(16):2487–2498. https://doi.org/10.1016/S0013-4686(01)00449-2

    Article  CAS  Google Scholar 

  26. Zhang Y, Sun C, Lu P, Li K, Song S, Xue D (2012) Crystallization design of MnO2 towards better supercapacitance. CrystEngComm 14(18):5892–5897. https://doi.org/10.1039/c2ce25610j

    Article  CAS  Google Scholar 

  27. Mimi N, Messaoudi B, Takenouti H, Pillier F (2009) Synthese de nouveaux materieux de structure nanometrique pour electrode de piles. Ann Chim 34(3):187–199. https://doi.org/10.3166/acsm.34.187-199

    Article  CAS  Google Scholar 

  28. Paul R, Cartwright A (1986) The mechanism of the deposition of manganese dioxide: part II. Electrode impedance studies. J Electroanal Chem Interfacial Electrochem 201(1):113–122. https://doi.org/10.1016/0022-0728(86)90091-4

    Article  CAS  Google Scholar 

  29. Cherchour N, Deslouis C, Messaoudi B, Pailleret A (2011) pH sensing in aqueous solutions using a MnO2 thin film electrodeposited on a glassy carbon electrode. Electrochim Acta 56(27):9746–9755. https://doi.org/10.1016/j.electacta.2011.08.011

    Article  CAS  Google Scholar 

  30. Zhang Q, Cheng X, Zheng C, Feng X, Qiu G, Tan W, Liu F (2011) Roles of manganese oxides in degradation of phenol under UV-vis irradiation: adsorption, oxidation, and photocatalysis. J Environ Sci 23(11):1904–1910. https://doi.org/10.1016/S1001-0742(10)60655-9

    Article  CAS  Google Scholar 

  31. Moulai F, Cherchour N, Messaoudi B, Zerroual L (2017) Electrosynthesis and characterization of nanostructured MnO2 deposited on stainless steel electrode: a comparative study with commercial EMD. Ionics 23:1–8

    Article  CAS  Google Scholar 

  32. Kozawa A, Powers R (1967) Cathodic reduction of Beta-MnO2 and gamma-MnO2 in NH4CI and KOH electrolytes. Electr Technol 5:535

    CAS  Google Scholar 

  33. Chou S, Cheng F, Chen J (2006) Electrodeposition synthesis and electrochemical properties of nanostructured γ-MnO2 films. J Power Sources 162(1):727–734. https://doi.org/10.1016/j.jpowsour.2006.06.033

    Article  CAS  Google Scholar 

  34. Chabre Y, Pannetier J (1995) Structural and electrochemical properties of the proton/γ-MnO2 system. Prog Solid State Chem 23(1):1–130. https://doi.org/10.1016/0079-6786(94)00005-2

    Article  CAS  Google Scholar 

  35. Saravanakumar K, Muthuraj V, Vadivel S (2016) Constructing novel Ag nanoparticles anchored on MnO2 nanowires as an efficient visible light driven photocatalyst. RSC Adv 6(66):61357–61366. https://doi.org/10.1039/C6RA10444D

    Article  CAS  Google Scholar 

  36. Dewald J (1960) The charge and potential distributions at the zinc oxide electrode. Bell Labs Tech J 39(3):615–639. https://doi.org/10.1002/j.1538-7305.1960.tb03935.x

    Article  Google Scholar 

  37. A. Loucif, Caractérisation photoélectrochimique des oxydes formés sur alliages base nickel en milieu primaire des réacteurs à eau pressurisée, Grenoble, 2012

    Google Scholar 

  38. Nakayama M, Mito S, Mohri Y (2014) Enhanced photocurrent in Birnessite–type MnO2 thin films in the visible and near-infrared regions by scaffolding multi-wall carbon nanotubes. J Electrochem Soc 161(6):H355–H358. https://doi.org/10.1149/2.017406jes

    Article  CAS  Google Scholar 

  39. Ali GA, Yusoff MM, Shaaban ER, Chong KF (2017) High performance MnO 2 nanoflower supercapacitor electrode by electrochemical recycling of spent batteries. Ceram Int 43(11):8440–8448. https://doi.org/10.1016/j.ceramint.2017.03.195

    Article  CAS  Google Scholar 

  40. Pinaud BA, Chen Z, Abram DN, Jaramillo TF (2011) Thin films of sodium birnessite-type MnO2: optical properties, electronic band structure, and solar photoelectrochemistry. J Phys Chem C 115(23):11830–11838. https://doi.org/10.1021/jp200015p

    Article  CAS  Google Scholar 

  41. Varela F, Gassa L, Vilche J (1993) Characterization of passive layers formed on lead by electrochemical impedance spectroscopy. J Electroanal Chem 353(1-2):147–160. https://doi.org/10.1016/0022-0728(93)80293-Q

    Article  CAS  Google Scholar 

  42. Di Paola A, Shukla D, Stimming U (1991) Photoelectrochemical study of passive films on stainless steel in neutral solutions. Electrochim Acta 36(2):345–352. https://doi.org/10.1016/0013-4686(91)85260-E

    Article  Google Scholar 

  43. Gassa L, Mishima H, de Mishima BL, Vilche J (1997) An electrochemical impedance spectroscopy study of electrodeposited manganese oxide films in borate buffers. Electrochim Acta 42(11):1717–1723. https://doi.org/10.1016/S0013-4686(96)00371-4

    Article  CAS  Google Scholar 

  44. Belhadi A, Boudjellal L, Boumaza S, Trari M (2017) Hydrogen production over the hetero-junction MnO2/SiO2. Int J Hydrog Energy. https://doi.org/10.1016/j.ijhydene.2017.06.086

  45. Bessekhouad Y, Trari M, Doumerc J-P (2003) CuMnO2, a novel hydrogen photoevolution catalyst. Int J Hydrog Energy 28(1):43–48. https://doi.org/10.1016/S0360-3199(02)00023-X

    Article  CAS  Google Scholar 

  46. Belabed C, Haine N, Benabdelghani Z, Bellal B, Trari M (2014) Photocatalytic hydrogen evolution on the hetero-system polypyrrol/TiO2 under visible light. Int J Hydrog Energy 39(31):17533–17539. https://doi.org/10.1016/j.ijhydene.2014.08.107

    Article  CAS  Google Scholar 

  47. Yu K, Yang S, He H, Sun C, Gu C, Ju Y (2009) Visible light-driven photocatalytic degradation of rhodamine B over NaBiO3: pathways and mechanism. J Phys Chem A 113(37):10024–10032. https://doi.org/10.1021/jp905173e

    Article  CAS  PubMed  Google Scholar 

  48. Fu H, Zhang S, Xu T, Zhu Y, Chen J (2008) Photocatalytic degradation of RhB by fluorinated Bi2WO6 and distributions of the intermediate products. Environ Sci Technol 42(6):2085–2091. https://doi.org/10.1021/es702495w

    Article  CAS  PubMed  Google Scholar 

  49. Sun M, Li D, Chen Y, Chen W, Li W, He Y, Fu X (2009) Synthesis and photocatalytic activity of calcium antimony oxide hydroxide for the degradation of dyes in water. J Phys Chem C 113(31):13825–13831. https://doi.org/10.1021/jp903355a

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from General Direction of Scientific Research and of Technological Development of Algeria (DGRSDT/MESRS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatsah Moulai.

Additional information

Highlights

• RhB photodegradation by γ-MnO2 film electrodeposited as photocatalyst.

Eg and specific surface area of γ-MnO2 are about 1.41 eV and 140 m2 g−1, respectively.

• γ-MnO2 film is more photocatalytically efficiency under visible light than UV light.

• The highest photodegradation rate (90%) is obtained under visible light after 60 min.

• The photodegradation under visible light occurs via photocatalytic oxidation and/or photosensitization processes.

Electronic supplementary material

ESM 1

(DOC 337 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moulai, F., Fellahi, O., Messaoudi, B. et al. Electrodeposition of nanostructured γ-MnO2 film for photodegradation of Rhodamine B. Ionics 24, 2099–2109 (2018). https://doi.org/10.1007/s11581-018-2440-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2440-7

Keywords

Navigation