Skip to main content
Log in

Characteristics of diluted magnetic semiconductor based on Mn-doped TiO2 nanorod array films

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, un-doped and Mn-doped TiO2 nanorod (NR) array films were successfully prepared by hydrothermal method that deposited on FTO substrate at different molar ratios (x = 0, 0.025, 0.05, 0.075, and 0.1). The prepared samples were examined by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). XRD illustrates the pure rutile phase in all samples. The preferred orientation along [001] for pure sample convert to [101] direction with increasing doping content. Lattice constants increase with increasing doping content. The top view of FESEM images show the uniformly distributed nanorod arrays. The nanorods’ length decrease, and their diameters increase with increasing doping content. The nanorods start to bevel from its vertical direction after doping. The crystal size of TiO2 NRs with different manganese doping has calculated using the Williamson-Hall plot. The saturation magnetism appeared in pure titanium oxide has been attributed to the oxygen vacancies, while it changed to diluted magnetic semiconductor after doped with Mn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rafiq M, Nafees M (2018) Structural optical and magnetic study of Ni- doped ­ TiO2 nanoparticles synthesized by sol – gel method. Int Nano Lett 8:1–8

    Article  Google Scholar 

  2. Kalb J, Dorman J, Siroky S, Schmidt-Mende L (2019) Controlling the spatial direction of hydrothermally grown rutile TiO2 nanocrystals by the orientation of seed crystals. Crystals 9:1–8

    Article  CAS  Google Scholar 

  3. Noman M, Ashraf M, Ali A (2019) Synthesis and applications of nano-TiO2: a review. Environ Sci Pollut Res 26(4):3262–3291

    Article  CAS  Google Scholar 

  4. Barka N, Assabbane A (2008) Photocatalytic degradation of methyl orange with immobilized TiO2 nanoparticles: effect of pH and some inorganic anions. Phys Chem News 41:85–88

    CAS  Google Scholar 

  5. Salman ON, Agool IR, Ismail MM (2017) Preparation of the scattering layer based on TiO2 nanotube and their dye sensitized solar cell applications. Appl Phys A Mater Sci Process 123(6):402

    Article  Google Scholar 

  6. Bupasiri T, Tunlasakun K, Mungkung N (2017) Characteristics of TiO2 nano structure electrode layer electrochromic device (smart window application), in international conference on applied electrical and mechanical engineering 2017:198–202

  7. Feng T, Feng G, Yan L, Pan J (2014) One-dimensional nanostructured TiO2 for photocatalytic degradation of organic pollutants in wastewater. Int J Photoenergy 2014:1–14

    Article  Google Scholar 

  8. AL-Jawad SMH, Salman ON, Yousif NA (2019) Structural, optical and electrical properties of TiO2 NR arrays deposited by hydrothermal method. Surf Rev Lett 26(03):1850155

    Article  Google Scholar 

  9. AL-Jawad SMH, Mohammad RM, Imran NJ (2018) Effect of electrolyte solution on structural and optical properties of TiO2 grown by anodization technique for photoelectrocatalytic application. Surf Rev Lett 25(04):1850078

    Article  CAS  Google Scholar 

  10. Iraj M, Nayeri F, Asl-soleimani E, Narimani K (2015) Controlled growth of vertically aligned TiO2 nanorod arrays using the improved hydrothermal method and their application to dye-sensitized solar cells. J Alloys Compd 20:1–7

    Google Scholar 

  11. Fajariah N, Prabowo W, Fathurrahman F, Melati A, Dipojono KH (2017) The investigation of electronic structure of transition metal doped TiO2 for diluted magnetic semiconductor applications: a first principle study. Procedia Eng 170:41–147

    Article  Google Scholar 

  12. Hong N, Sakai J, Prellier W, Antoine R (2004) Ferromagnetism in transition-metal-doped Ti O2 thin films. Phys Rev 70:1–6

    Google Scholar 

  13. Chen L, Tian J, Qiu H, Yin Y, Wang X, Dai J, Wu P, Wang A, Chu L (2009) Preparation of TiO2nanofilm via sol-gel process and its photocatalytic activity for degradation of methyl orange. Ceram Int 35(8):3275–3280

    Article  CAS  Google Scholar 

  14. Attar A, Mirdamadi S, Hajiesmaeilbaigi F, Ghamsari M (2007) Growth of TiO2 nanorods by sol – gel template process growth of TiO2 nanorods by sol-gel template process. J Mater Sci Technol 23(5):1–4

    Google Scholar 

  15. Pradhan S, Reucroft P, Yang F, Dozier A (2003) Growth of TiO2 nanorods by metalorganic chemical vapor deposition. J Cryst Growth 256(1–2):83–88

    Article  CAS  Google Scholar 

  16. Li J, Ridge O, Wu J (2016) Synthesis of nanoparticles via solvothermal and hydrothermal methods. Handb Nanoparticles 17:1–28

    Google Scholar 

  17. AL-Jawad SMH, Taha A, Redha A (2019) Studying the structural, morphological, and optical properties of CuS:Ni nanostructure prepared by a hydrothermal method for biological activity. J Sol-Gel Sci Technol 91(2):310–323

    Article  CAS  Google Scholar 

  18. AL-Jawad SMH, Ismail MM, Emad S (2017) Characterization of Mn, cu, and (Mn, cu) co-doped ZnS nanoparticles. J Opt Tech 84(7):80–85

    Article  Google Scholar 

  19. Burungale V, Satale V, Teli A, Kamble A, Kim J, Patil P (2016) Surfactant free single step synthesis of TiO2 3-D micro flowers by hydrothermal route and its photoelectrochemical characterizations. J Alloys Compd 656:491–499

    Article  CAS  Google Scholar 

  20. Zheng Z, Chen J, Yoshida R, Gao X, Tarr K (2014) One-step synthesis of TiO2 nanorod arrays on Ti foil for supercapacitor application. Nanotechnology 25(43):1–7

    Article  CAS  Google Scholar 

  21. Jithin M, Saravanakumar K, Ganesan V, Reddy V, Razad P, Patidar M, Jeyadheepan K, Marimuthu G, Sreelakshmi V, Mahalakshmi K (2017) Growth, mechanism and properties of TiO2 nanorods embedded nanopillar: evidence of lattice orientation effect. Superlattice Microst 109:145–153

    Article  CAS  Google Scholar 

  22. Liu S, Plawsky J (2017) Solid-state dewetting of gold aggregates/islands on TiO2 nanorod structures grown by oblique angle deposition. Langmuir 33(49):14066–14077

    Article  CAS  Google Scholar 

  23. Al-jawad SMH (2017) Comparative study between CBD and SILAR methods for deposited TiO2, CdS, and TiO2 / CdS core-shell structure. Mater Sci Semicond Process 67:75–83

    Article  CAS  Google Scholar 

  24. Diaz R, Bihri H, Aouaj M, Rueda F (2007) Preparation and characterization of sprayed FTO thin films. Eur Phys J Appl Phys 219:217–219

    Google Scholar 

  25. Meagher L (1979) Polyhedral thermal expansion in the TiO2 polymorphs: refinement of the crystal structure of rutile and brookite at high temperature sample at 300 degrees C. Can Mineral 17:77–85

    CAS  Google Scholar 

  26. Hassanzadeh A, Moazzez B, Haghgooie H, Nasseri M, Golzan M, Sedghi H (2008) Synthesis of SnO2 nanopowders by a sol-gel process using propanol-isopropanol mixture. Cent Eur J Chem 6(4):651–656

    CAS  Google Scholar 

  27. Zhang S (2017) Study of fluorine-doped tin oxide (FTO) thin films for photovoltaics applications. PH. D. Thesis, Materials. Université Grenoble Alpes

  28. Sellers M, Seebauer E (2013) Room temperature ferromagnetism in Mn-doped TiO2 nanopillar matrices. Mater Lett 20:1–15

    Google Scholar 

  29. Al-Jawad SMH, Elttayf A, Saber A (2017) Studying structural, optical, electrical, and sensing properties of nanocrystalline SnO2:cu films prepared by sol-gel method for CO gas sensor application at low temperature. Surf Rev Lett 24(8):1–12

    Article  Google Scholar 

  30. Delhez R, Mittemeijer E (1982) Determination of crystallite size and lattice distortions through X-ray diffraction line profile analysis. Fresenius Z Anal Chem 312(1):1–16

    Article  CAS  Google Scholar 

  31. Gokul B, Matheswaran P, Sathyamoorthy R (2013) Influence of annealing on physical properties of CdO thin films prepared by SILAR method. J Mater Sci Technol 29(1):17–21

    Article  CAS  Google Scholar 

  32. Mukhtar M (2012) Co-precipitation synthesis and characterization of nanocrystalline zinc oxide particles doped with Cu2+ ions. Mater Sci Appl 3(08):543–551

    Google Scholar 

  33. Ni S, Guo F, Wang D, Jiao S (2019) Modification of TiO2 nanowire arrays with Sn doping as photoanode for highly efficient. Crystals 9(2):113–125

    Article  Google Scholar 

  34. Galstyan V (2017) Porous TiO2 -based gas sensors for cyber chemical systems to provide security and medical diagnosis. Sensors 17(12):1–25

    Article  Google Scholar 

  35. Chan S, Li M, Wei H, Chen S, Kuo C (2015) The effect of annealing on nanothick indium tin oxide transparent conductive films for touch sensors. J Nanomater 2015:1–5

    Article  Google Scholar 

  36. Sapra S, Sarma D, Sanvito S, Hill N (2002) Influence of quantum confinement on the electronic and magnetic properties of (Ga,Mn) as diluted magnetic semiconductor. Nano Lett 2(6):605–608

    Article  CAS  Google Scholar 

  37. SMH AL-J, Rafic SN, Muhsen MM (2017) Preparation and characterization of polyaniline-cadmium sulfide nanocomposite for gas sensor application. Mod Phys Lett B 31(26):1750234

    Article  Google Scholar 

  38. AL-Jawad SMH (2017) Structural and optical properties of core–shell TiO2/CdS prepared by chemical bath deposition. J Electron Mater 46(10):5837–5847

    Article  CAS  Google Scholar 

  39. Kaminski A, Das Sarma S (2002) Polaron percolation in diluted magnetic semiconductors. Phys Rev Lett 88(24):247202

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukhlis M. Ismail.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Jawad, S.M.H., Ismail, M.M. & Ghazi, S.F. Characteristics of diluted magnetic semiconductor based on Mn-doped TiO2 nanorod array films. J Solid State Electrochem 25, 435–443 (2021). https://doi.org/10.1007/s10008-020-04823-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04823-8

Keywords

Navigation