Skip to main content

Advertisement

Log in

Effect of Sr and Co co-doping on the TiO2-diluted magnetic semiconductor for spintronic applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Due to its theoretically anticipated and practically observed above-room-temperature ferromagnetism and lengthy spin-coherence time, TiO2 has long been regarded as a viable candidate material for diluted magnetic semiconductors. Therefore, pure and (Sr, Co) co-doped TiO2 nanostructures of different compositions were synthesized via a simple hydrothermal method. X-ray diffraction analysis confirmed the formation of a high anatase phase with grain sizes ranging between 26 and 33 nm. The functional groups of these nanoparticles were observed through Fourier transform infrared spectroscopy analysis. Furthermore, Raman spectroscopy endorsed the single phase of the prepared nanostructures. UV–Vis spectroscopy was applied to study the behavior of absorption, which indicated an increase in band gap from 3.30 eV (pure TiO2) to 3.34 eV (5% co-doped TiO2). In addition, Ti3+ centers affiliated with oxygen vacancies have been described by electron spin resonance spectroscopy. Our findings provide comprehensive insight to tailor structural and optical properties of TiO2 nanostructure by Sr and Co co-doping. The (Sr, Co) co-doped TiO2 samples show ferromagnetic behavior. The saturation and remnant magnetizations (Ms and Mr) increased from (0.821 to 2.801) memu/g and (0.23 to 0.27 memu/g) while coercivity (Hc) enhanced from 50 to 75 Oe with an increase in the concentration of dopants in the TiO2 matrix. In (Sr, Co) co-doped TiO2 specimens, oxygen vacancies have been shown to be the principal cause of room-temperature ferromagnetism. The results reveal that the improved optical and magnetic characteristics of the (Sr, Co) co-doped TiO2 are closely linked to oxygen vacancy concentrations. The (Sr, Co)-doped TiO2 nanoparticles are suitable for spin-based electronics and optoelectronics-based industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D. Wöhrle, D. Meissner, Organic solar cells. Adv. Mater. 3(3), 129–138 (1991)

    Google Scholar 

  2. A.P. Zoombelt, M. Fonrodona, M.M. Wienk et al., Photovoltaic performance of an ultrasmall band gap polymer. Org. Lett. 11(4), 903–906 (2009)

    CAS  Google Scholar 

  3. S.E. Shaheen, C.J. Brabec, N.S. Sariciftci et al., 2.5% efficient organic plastic solar cells. Appl. Phys. Lett. 78(6), 841–843 (2001)

    CAS  Google Scholar 

  4. X. Yu, T.J. Marks, A. Facchetti, Metal oxides for optoelectronic applications. Nat. Mater. 15(4), 383–396 (2016)

    CAS  Google Scholar 

  5. A.O. Ibhadon, P. Fitzpatrick, Heterogeneous photocatalysis: recent advances and applications. Catalysts 3(1), 189–218 (2013)

    CAS  Google Scholar 

  6. R. Khan, S. Fashu, Structural, dielectric and magnetic properties of (Al, Ni) co-doped ZnO nanoparticles. J. Mater. Sci.: Mater. Electron. 28(5), 4333–4339 (2017)

    CAS  Google Scholar 

  7. J. Nataraj, P.Y. Bagali, M. Krishna et al., Development of silver doped titanium oxide thin films for gas sensor applications. Mater. Today 5(4), 10670–10680 (2018)

    CAS  Google Scholar 

  8. R. Khan, S. Fashu, Z.U. Rehman et al., Structure and magnetic properties of (Co, Mn) co-doped ZnO diluted magnetic semiconductor nanoparticles. J. Mater. Sci.: Mater. Electron. 29(1), 32–37 (2018)

    CAS  Google Scholar 

  9. L.-H. Xu, D.S. Patil, J. Yang et al., Metal oxide nanostructures: synthesis, properties, and applications. J. Nanotechnol. (2015). https://doi.org/10.1155/2015/135715

    Article  Google Scholar 

  10. M. Zubair, A. Khan, T. Hua et al., Oxygen vacancies induced room temperature ferromagnetism and enhanced dielectric properties in Co and Mn co-doped ZnO nanoparticles. J. Mater. Sci.: Mater. Electron. 32(7), 9463–9474 (2021)

    Google Scholar 

  11. N. Coleman Jr., Synthesis and characterization of metal doped titanium dioxide, transition metalphosphides, sulfides and thiophosphates for photocatalysis and energy applications, Dissertation, University of Iowa. https://doi.org/10.17077/etd.61b6fq5m (2016)

  12. K. Rajwali, F. Ming-Hu, Dielectric and magnetic properties of (Zn, Co) co-doped SnO2 nanoparticles. Chin. Phys. B 24(12), 127803 (2015)

    Google Scholar 

  13. M.G. Kulkarni, A.K. Dalai, Waste cooking oil an economical source for biodiesel: a review. Ind. Eng. Chem. Res. 45(9), 2901–2913 (2006)

    CAS  Google Scholar 

  14. R. Khan, S. Fashu, Y. Zaman, Magnetic and dielectric properties of (Co, Zn) co-doped SnO2 diluted magnetic semiconducting nanoparticles. J. Mater. Sci.: Mater. Electron. 27(6), 5960–5966 (2016)

    CAS  Google Scholar 

  15. K. Nakata, A. Fujishima, TiO2 photocatalysis: design and applications. J. Photochem. Photobiol. C 13(3), 169–189 (2012)

    CAS  Google Scholar 

  16. H. Tang, K. Prasad, R. Sanjines et al., Electrical and optical properties of TiO2 anatase thin films. J. Appl. Phys. 75(4), 2042–2047 (1994)

    CAS  Google Scholar 

  17. X. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107(7), 2891–2959 (2007)

    CAS  Google Scholar 

  18. M. Matsuoka, M. Kitano, M. Takeuchi et al., Photocatalysis for new energy production: recent advances in photocatalytic water splitting reactions for hydrogen production. Catal. Today 122(1–2), 51–61 (2007)

    CAS  Google Scholar 

  19. R. Asahi, T. Morikawa, T. Ohwaki et al., Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293(5528), 269–271 (2001)

    CAS  Google Scholar 

  20. A. Di Paola, M. Bellardita, L. Palmisano, Brookite, the least known TiO2 photocatalyst. Catalysts 3(1), 36–73 (2013)

    Google Scholar 

  21. Z. Wu, D. Lee, M.F. Rubner et al., Structural color in porous, superhydrophilic, and self-cleaning SiO2/TiO2 bragg stacks. Small 3(8), 1445–1451 (2007)

    CAS  Google Scholar 

  22. N. Rajamanickam, S. Kanmani, S. Rajashabala et al., Influence of Sr doping on structural, optical and magnetic properties of TiO2 nanoparticles. Mater. Lett. 161, 520–522 (2015)

    CAS  Google Scholar 

  23. Y. Kubota, T. Shuin, C. Kawasaki et al., Photokilling of T-24 human bladder cancer cells with titanium dioxide. Br. J. Cancer 70(6), 1107–1111 (1994)

    CAS  Google Scholar 

  24. S.N. Hoseini, A.K. Pirzaman, M.A. Aroon et al., Photocatalytic degradation of 2,4-dichlorophenol by co-doped TiO2 (Co/TiO2) nanoparticles and Co/TiO2 containing mixed matrix membranes. J. Water Process Eng. 17, 124–134 (2017)

    Google Scholar 

  25. M.M. Khan, S. Kumar, M.N. Khan et al., Microstructure and blueshift in optical band gap of nanocrystalline AlxZn1−xO thin films. J. Lumin. 155, 275–281 (2014)

    Google Scholar 

  26. W. Asghar, I.A. Qazi, H. Ilyas et al., Comparative solid phase photocatalytic degradation of polythene films with doped and undoped TiO2 nanoparticles. J. Nanomater. (2011). https://doi.org/10.1155/2011/461930

    Article  Google Scholar 

  27. S. Mugundan, B. Rajamannan, G. Viruthagiri et al., Synthesis and characterization of undoped and cobalt-doped TiO2 nanoparticles via sol–gel technique. Appl. Nanosci. 5(4), 449–456 (2015)

    CAS  Google Scholar 

  28. B. Choudhury, A. Choudhury, Luminescence characteristics of cobalt doped TiO2 nanoparticles. J. Lumin. 132(1), 178–184 (2012)

    CAS  Google Scholar 

  29. R.D. Chekuri, S.R. Tirukkovalluri, Synthesis of cobalt doped titania nano material assisted by gemini surfactant: characterization and application in degradation of acid red under visible light irradiation. S. Afr. J. Chem. Eng. 24, 183–195 (2017)

    Google Scholar 

  30. G.D. Venkatasubbu, S. Ramasamy, V. Ramakrishnan et al., Folate targeted pegylated titanium dioxide nanoparticles as a nanocarrier for targeted paclitaxel drug delivery. Adv. Powder Technol. 24(6), 947–954 (2013)

    Google Scholar 

  31. G. Yang, Z. Jiang, H. Shi et al., Preparation of highly visible-light active n-doped TiO2 photocatalyst. J. Mater. Chem. 20(25), 5301–5309 (2010)

    CAS  Google Scholar 

  32. A.M. Abdullah, N.J. Al-Thani, K. Tawbi et al., Carbon/nitrogen-doped TiO2: new synthesis route, characterization and application for phenol degradation. Arab. J. Chem. 9(2), 229–237 (2016)

    CAS  Google Scholar 

  33. A.M. Toufiq, F. Wang, Q. Li et al., Hydrothermal synthesis of MnO2 nanowires: structural characterizations, optical and magnetic properties. Appl. Phys. A 116(3), 1127–1132 (2014)

    CAS  Google Scholar 

  34. H. Lin, C. Huang, W. Li et al., Size dependency of nanocrystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol. Appl. Catal. B 68(1–2), 1–11 (2006)

    CAS  Google Scholar 

  35. J.-P. Rino, N. Studart, Structural correlations in titanium dioxide. Phys. Rev. B 59(10), 6643 (1999)

    CAS  Google Scholar 

  36. P. Bhange, S. Awate, R. Gholap et al., Photocatalytic degradation of methylene blue on Sn-doped titania nanoparticles synthesized by solution combustion route. Mater. Res. Bull. 76, 264–272 (2016)

    CAS  Google Scholar 

  37. X.-h Lu, X. Huang, S.-l Xie et al., Facile electrochemical synthesis of single crystalline CeO2 octahedrons and their optical properties. Langmuir 26(10), 7569–7573 (2010)

    CAS  Google Scholar 

  38. R. Hoffmann, A chemical and theoretical way to look at bonding on surfaces. Rev. Mod. Phys. 60(3), 601–628 (1988)

    CAS  Google Scholar 

  39. A. Lund, M. Shiotani, S. Shimada, Principles and Applications of ESR Spectroscopy (Springer Science & Business Media, Dordrecht, 2011)

    Google Scholar 

  40. S. Zhou, E. Čižmár, K. Potzger et al., Origin of magnetic moments in defective TiO2 single crystals. Phys. Rev. B 79(11), 113201 (2009)

    Google Scholar 

  41. D.C. Hurum, K.A. Gray, T. Rajh et al., Recombination pathways in the degussa p25 formulation of TiO2: surface versus lattice mechanisms. J. Phys. Chem. B 109(2), 977–980 (2005)

    CAS  Google Scholar 

  42. S.B. Ogale, Dilute doping, defects, and ferromagnetism in metal oxide systems. Adv. Mater. 22(29), 3125–3155 (2010)

    CAS  Google Scholar 

  43. H. Peng, J. Li, S.-S. Li et al., Possible origin of ferromagnetism in undoped anatase TiO2. Phys. Rev. B 79(9), 092411 (2009)

    Google Scholar 

  44. S.D. Yoon, Y. Chen, A. Yang et al., Oxygen-defect-induced magnetism to 880 k in semiconducting anatase TiO2−δ films. J. Phys.: Condens. Matter 18(27), L355 (2006)

    CAS  Google Scholar 

  45. R. Khan, K. Althubeiti, Zulfiqar et al., Structure and magnetic properties of (Co, Ce) co-doped ZnO-based diluted magnetic semiconductor nanoparticles. J. Mater. Sci.: Mater. Electron 32, 24394–24400 (2021)

    CAS  Google Scholar 

  46. R. Khan, V. Tirth, A. Ali, et al., Effect of Sn-doping on the structural, optical, dielectric and magnetic properties of ZnO nanoparticles for spintronics applications. J. Mater. Sci.: Mater. Electron. 32, 21631–21642 (2021)

    CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Taif University Researchers Supporting Project Number (TURSP-2020/267), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Khaled Althubeiti or Rajwali Khan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, M., Saqib, M., Althubeiti, K. et al. Effect of Sr and Co co-doping on the TiO2-diluted magnetic semiconductor for spintronic applications. J Mater Sci: Mater Electron 32, 28718–28729 (2021). https://doi.org/10.1007/s10854-021-07253-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07253-y

Navigation