Skip to main content
Log in

Synergic effect of catalyst/binder in passivation side-products of Li-oxygen cells

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

A Correction to this article was published on 13 December 2019

This article has been updated

Abstract

While used in minor proportion respect to other components in cathode formulations, binders play a crucial role in lithium batteries cathode. This is particularly true in Li-O2 batteries which represent a very harsh environment mainly because of the formation, upon cycling, of very aggressive superoxide radicals. In such batteries, the use of catalyst in the cathode formulation is quite usual to help oxygen reduction reaction and oxygen evolution reaction (ORR and OER) to proceed rapidly and reversibly. However, the slightest binder degradation upon cycling can hinder the catalyst effects dramatically, modifying them to act on other reactions associated with the generated side-products, thus deteriorating cell performances and preventing researchers from drawing the right conclusions about catalytic properties of new materials. In this work, the influence of different catalysts in the degradation of the PVDF binder, on the performance of Li-O2 batteries, was investigated. The results obtained were compared with the ones of cathodes prepared with the same catalysts but Li-Nafion binder instead (already reported as stable), to further demonstrate that the choice of binder must be strongly linked to the nature of the catalyst. The catalysts employed for this study were α-MnO2, and commercial Co3O4, and Co phthalocyanines (CoPc).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

  • 13 December 2019

    The Authors regret that, in the published version, Figure 2 was substituted by Figure 1.

References

  1. Grande L, Paillard E, Hassoun J, Park JB, Lee YJ, Sun YK, Passerini S, Scrosati B (2015) The lithium/air battery: still an emerging system or a practical reality? Adv Mater 27:784–800

    CAS  PubMed  Google Scholar 

  2. Ma Z, Yuan X, Li L, Ma ZF, Wilkinson DP, Zhang L, Zhang J (2015) A review of cathode materials and structures for rechargeable lithium–air batteries. Energy Environ Sci 8:2144–2198

    CAS  Google Scholar 

  3. Vankova S, Francia C, Amici J, Zeng J, Bodoardo S, Penazzi N, Collins G, Geaney H, O’Dwyer C (2017) Influence of binders and solvents on stability of Ru/RuOx nanoparticles on ITO nanocrystals as Li–O2 battery cathodes. ChemSusChem 10(3):575–586

    CAS  PubMed  Google Scholar 

  4. Black R, Oh SH, Lee JH, Yim T, Adams B, Nazar LF (2012) Screening for superoxide reactivity in Li-O2 batteries: effect on Li2O2/LiOH crystallization. J Am Chem Soc 134:2902–2905

    CAS  PubMed  Google Scholar 

  5. Geaney H, O’Dwyer C (2016) Examining the role of electrolyte and binders in determining discharge product morphology and cycling performance of carbon cathodes in Li-O2 batteries. J Electrochem Soc 163:A43–A49

    CAS  Google Scholar 

  6. Amanchukwu CV, Harding JR, Shao-Horn Y, Hammond PT (2015) Understanding the chemical stability of polymers for lithium-air batteries. Chem Mater 27:550–561

    CAS  Google Scholar 

  7. Maccone P, Brinati G, Arcella V (2000) Environmental stress cracking of poly(vinylidene fluoride) in sodium hydroxide. Effect of chain regularity. Polym Eng Sci 40:761–767

    CAS  Google Scholar 

  8. Papp JK, Forster JD, Burke CM, Kim HW, Luntz AC, Shelby RM, Urban JJ, McCloskey BD (2017) Poly(vinylidene fluoride) (PVDF) binder degradation in Li-O2 batteries: a consideration for the characterization of lithium superoxide. J Phys Chem Lett 8(6):1169–1174

    CAS  PubMed  Google Scholar 

  9. Tomita K, Noguchi H, Uosaki K (2018) Effect of water and HF on the distribution of discharge products at Li−O2 battery cathode. ACS Appl Energy Mater 1:3434–3442

    CAS  Google Scholar 

  10. Younesi R, Hahlin M, Treskow M, Scheers J, Johansson P, Edstrom K (2012) Ether based electrolyte, LiB(CN)4 salt and binder degradation in the Li-O2 battery studied by hard X-ray photoelectron spectroscopy (HAXPES). J Phys Chem C 116:18597–11860

    CAS  Google Scholar 

  11. Martinez Crespiera S, Amantia D, Knipping E, Aucher C, Aubouy L, Amici J, Zeng J, Zubair U, Francia C, Bodoardo S (2017) Cobalt-doped mesoporous carbon nanofibres as free-standing cathodes for lithium–oxygen batteries. J Appl Electrochem 47:497–506

    CAS  Google Scholar 

  12. Huang YG, Chen J, Zhang XH, Zan YH, Wu XM, He ZQ, Wang HQ, Li QY (2016) Three-dimensional Co3O4/CNTs/CFP composite as binder-free cathode for rechargeable Li-O2 batteries. Chem Eng J 296:28–34

    CAS  Google Scholar 

  13. Wang K, Xu S, Zhu Q, Du F, Li X, Wei X, Chen J (2015) Co3O4-based binder-free cathodes for lithium−oxygen batteries with improved cycling stability. Dalton Trans 44:8678–8684

    PubMed  Google Scholar 

  14. Wang H, Chen H, Wang H, Wu L, Wu Q, Luo Z, Wang F (2019) Hierarchical porous FeCo2O4@Ni as a carbon and binder-free cathode for lithium-oxygen batteries. J Alloys Compd 780:107–115

    CAS  Google Scholar 

  15. Tasarkuyu E, Çoskun A, Francia C, Amici J, Gül ÖF, Sener T (2016) What do we need for the lithium-air batteries: a promoter or a catalyst? Int J Hydrog Energy 41:20583–20591

    Google Scholar 

  16. Song J, Lu X, Jiao Y, Wang P, Xu M, Li T, Chen X, Li J, Zhang Z (2018) Catalyst nanoarchitecturing via functionally implanted cobalt nanoparticles in nitrogen doped carbon host for aprotic lithium-oxygen batteries. J Power Sources 394:122–130

    CAS  Google Scholar 

  17. Cheng J, Jiang Y, Zhang M, Sun Y, Zou L, Chi B, Pu J, Jian L (2018) Aprotic lithium–air batteries tested in ambient air with a high-performance and low-cost bifunctional perovskite catalyst. Chem Cat Chem 10:1635–1642

    CAS  Google Scholar 

  18. Hang Y, Zhang C, Luo X, Xie Y, Xin S, Li Y, Zhang D, Goodenough J (2018) B α-MnO2 nanorods supported on porous graphitic carbon nitride as efficient electrocatalysts for lithium-air batteries. J Power Sources 392:15–22

    CAS  Google Scholar 

  19. Zhang Y, Hu M, Yuan M, Sun G, Li Y, Zhou K, Chen C, Nan C, Li Y (2019) Ordered two-dimensional porous Co3O4 nanosheets as electrocatalysts for rechargeable Li-O2 batteries. NanoResearch 12:299–302

    CAS  Google Scholar 

  20. Truong TT, Liu Y, Ren Y, Trahey L, Sun Y (2012) Morphological and crystalline evolution of nanostructured MnO2 and its application in lithium-air batteries. ACS Nano 6:8067–8077

    CAS  PubMed  Google Scholar 

  21. Debart A, Paterson AJ, Bao J, Bruce PG (2008) Angew Chem Int Ed 47:4521–4524

    CAS  Google Scholar 

  22. Hu Y, Zhang T, Cheng F, Zhao Q, Han X, Chen J (2015) Recycling application of Li-MnO2 batteries as rechargeable lithium–air batteries. Angew Chem Int Ed 54(14):4338–4343

    CAS  Google Scholar 

  23. Cheng H, Scott K (2014) Improving performance of rechargeable Li-air batteries from using Li-Nafion® binder. Electrochim Acta 116:51–58

    CAS  Google Scholar 

  24. Cheng F, Chen J (2012) Metal–air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chem Soc Rev 41(6):2172–2192

    CAS  PubMed  Google Scholar 

  25. Black R, Lee JH, Adams B, Mims CA, Nazar LF (2013) The role of catalysts and peroxide oxidation in lithium–oxygen batteries. Angew Chem 125:410–414

    Google Scholar 

  26. Trahan MJ, Jia Q, Mukerjee S, Plichta EJ, Hendrickson MA, Abraham KM (2013) Cobalt phthalocyanine catalyzed lithium-air batteries. J Electrochem Soc 160:A1577–A1586

    CAS  Google Scholar 

  27. Park JB, Lee SH, Jung HG, Aurbach D, Sun YK et al (2017) Adv Mater 30:1704162

    Google Scholar 

  28. Matsuda S, Mori S, Hashimoto K, Nakanishi S (2014) Transition Metal Complexes with macrocyclic ligands serve as efficient electrocatalysts for aprotic oxygen evolution on Li2O2. J Phys Chem C 118:28435–28439

    CAS  Google Scholar 

  29. Matsuda S, Mori S, Kubo Y, Uosaki K, Hashimoto K, Nakanishia S (2015) Cobalt phthalocyanine analogs as soluble catalysts that improve the charging performance of Li-O2 batteries. Chem Phys Lett 620:78–81

    CAS  Google Scholar 

  30. Liu ZX, Zhang YT, Jia CK, Wan H, Peng Z, Bi YJ, Liu Y, Peng ZQ, Wang Q, Li H, Wang DY, Zhang JG (2017) Decomposing lithium carbonate with a mobile catalyst. Nano Energy 36:390–397

    CAS  Google Scholar 

  31. Lee HW, Muralidharan P, Kim DK (2011) Synthesis of one-dimensional spinel LiMn2O4 nanostructures as a positive electrode in lithium ion battery. J Korean Ceram Soc 48:379–383

    CAS  Google Scholar 

  32. Zhao Z, Huang J, Peng Z (2018) Achilles’ Heel of lithium–air batteries: lithium carbonate. Angew Chem Int Ed 57(15):3874–3886

    CAS  Google Scholar 

  33. Christy M, Arul A, Zahoor A, Moon KU, Oh MY, Stephan AM, Nahm KS (2017) Role of solvents on the oxygen reduction and evolution of rechargeable Li-O2 battery. J Power Sources 342:825–835

    CAS  Google Scholar 

  34. Zahoor A, Christy M, Jang H, Nahm KS, Lee YS (2015) Increasing the reversibility of Li-O2 batteries with caterpillar structured αMnO2/N-GNF bifunctional electrocatalysts. Electrochim Acta 157:299–306

    CAS  Google Scholar 

  35. Geaney H, O’Dwyer C (2015) Electrochemical investigation of the role of MnO2 nanorod catalysts in water containing and anhydrous electrolytes for Li–O2 battery applications. Phys Chem Chem Phys 17(10):6748–6759

    CAS  PubMed  Google Scholar 

  36. He M, Zhang P, Xu S, Yan X (2016) Morphology engineering of Co3O4 nanoarrays as free-standing catalysts for lithium−oxygen batteries. ACS Appl Mater Interfaces 8(36):23713–23720

    CAS  PubMed  Google Scholar 

  37. Zhang D, Wang B, Jiang Y, Zhou P, Chen Z, Xu B, Yan M (2015) Enhanced electrocatalytic performance of Co3O4/Ketjen-black cathodes for Li-O2 batteries. J Alloys Compd 653:604–610

    CAS  Google Scholar 

  38. McCloskey BD, Speidel A, Scheffler R, Miller DC, Viswanathan V, Hummelshoj JS, Norskov JK, Luntz AC (2012) Twin problems of interfacial carbonate formation in nonaqueous Li-O2 batteries. J Phys Chem Lett 3:997–1001

    CAS  PubMed  Google Scholar 

  39. Liu Q, Jiang Y, Xu J, Xu D, Chang Z, Yin Y, Liu W, Zhang X (2015) Hierarchical Co3O4 porous nanowires as an efficient bifunctional cathode catalyst for long life Li–O2 batteries. Nano Res 8:576–583

    CAS  Google Scholar 

  40. Gao XW, Chen YH, Johnson L, Bruce PG (2016) Promoting solution phase discharge in Li-O2 batteries containing weakly solvating electrolyte solutions. Nat Mater 15(8):882–888

    CAS  PubMed  Google Scholar 

  41. Zhai D, Wang HH, Lau KC, Gao J, Redfern PC, Kang F, Li B, Indacochea E, Das U, Sun HH, Sun HJ, Amine K, Curtiss LA (2014) Raman evidence for late stage disproportionation in a Li−O2 battery. J Phys Chem Lett 5:2705–2710

    CAS  PubMed  Google Scholar 

  42. Wang F, Li X (2018) Effects of the electrode wettability on the deep discharge capacity of Li–O batteries . ACS Omega 3(6):6006-6012

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Ryan KR, Trahey L, Ingram BJ, Burrell AK (2012) Limited stability of ether-based solvents in lithium−oxygen batteries. J Phys Chem C 116:19724–19728

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Amici.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1747 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Márquez, P., Amici, J., Aguirre, M.J. et al. Synergic effect of catalyst/binder in passivation side-products of Li-oxygen cells. J Solid State Electrochem 23, 3309–3317 (2019). https://doi.org/10.1007/s10008-019-04417-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04417-z

Keywords

Navigation