Skip to main content
Log in

Synthesis and application of nanostructured MCo2O4(M=Co, Ni) for hybrid Li-air batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

We report the synthesis of MCo2O4 (M=Co, Ni) on Ni-mesh by a simple metal acetate decomposition method. Stability tests of the samples in aqueous acidified LiCl, LiOH and LiTFSI in H2O/DME showed that Co3O4/Ni and Co3O4-PVP/Ni are relatively stable in alkaline and neutral environments, with Co3O4/Ni being relatively more stable. For NiCo2O4/Ni and NiCo2O4-PVP/Ni, the low weight percentage change of cobalt in LiTFSI in H2O/DME suggests that they are mostly stable in this electrolyte. The electrochemical performance of the Li-air cell was evaluated using Li anode and a LAGP ceramic separator with above mentioned electrolytes. Co3O4 showed slightly higher catalytic activity for oxygen reduction reaction (ORR) than for oxygen evolution reaction (OER) for the first three cycles. The cell with LiTFSI in H2O/DME as aqueous catholyte showed that NiCo2O4 is a better catalyst for the OER than for the ORR, while the reverse was observed when LiOH was used as the electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Grande L, Paillard E, Hassoun J, Park J-B, Lee Y-J, Sun Y-K, Passerini S, Scrosati B (2015) The lithium/air battery: still an emerging system or a practical reality. Adv Mater 27:784–800

    Article  CAS  Google Scholar 

  2. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM (2012) Li-O2 and Li-S batteries with high energy storage. Nat Mater 11:19–29

    Article  CAS  Google Scholar 

  3. Christensen J, Albertus P, Sanchez-Carrera RS, Lohmann T, Kozinsky B, Liedtke R, Ahmed J, Kojic A (2012) A critical review of Li∕air batteries. J Electrochem Soc 159:R1

    Article  CAS  Google Scholar 

  4. Lu J, Li L, Park JB, Sun YK, Wu F, Amine K (2014) Aprotic and aqueous Li-O(2) batteries. Chem Rev 114:5611–5640

    Article  CAS  Google Scholar 

  5. Song C, Hui R, Zhang J (2008) High-temperature PEM fuel cell catalysts and catalyst layers. In: Zhang J (ed) PEM fuel cell electrocatalysts and catalyst layers fundamentals and applications. Springer-Verlag, London, pp 861–888

  6. Song M-K, Park S, Alamgir FM, Cho J, Liu M (2011) Nanostructured electrodes for lithium-ion and lithium-air batteries: the latest developments, challenges, and perspectives.Materials Science and Engineering: R: Reports 72: 203–252

  7. Ryu WH, Yoon TH, Song SH, Jeon S, Park YJ, Kim ID (2013) Bifunctional composite catalysts using Co3O4 nanofibers immobilized on nonoxidized graphene nanoflakes for high-capacity and long-cycle Li-O2 batteries. Nano Lett 13:4190–4197

    Article  CAS  Google Scholar 

  8. Xiao J, Mei D, Li X, Xu W, Wang D, Graff GL, Bennett WD, Nie Z, Saraf LV, Aksay IA, Liu J, Zhang JG (2011) Hierarchically porous graphene as a lithium-air battery electrode. Nano Lett 11:5071–5078

    Article  CAS  Google Scholar 

  9. Kim JG, Kim Y, Noh Y, Kim WB (2015) MnCo2O4 nanowires anchored on reduced graphene oxide sheets as effective bifunctional catalysts for Li-O2 battery cathodes. Chem Sus Chem 8:1752–1760

    Article  CAS  Google Scholar 

  10. Kim DS, Park YJ (2014) Buckypaper electrode containing carbon nanofiber/Co3O4 composite for enhanced lithium air batteries. Solid State Ionics 268:216–221

    Article  CAS  Google Scholar 

  11. Yang X-h, He P, Y-y X (2009) Preparation of mesocellular carbon foam and its application for lithium/oxygen battery. Electrochem Commun 11:1127–1130

    Article  CAS  Google Scholar 

  12. Lu J, Lei Y, Lau KC, Luo X, Du P, Wen J, Assary RS, Das U, Miller DJ, Elam JW, Albishri HM, El-Hady DA, Sun YK, Curtiss LA, Amine K (2013) A nanostructured cathode architecture for low charge overpotential in lithium-oxygen batteries. Nat Commun 4:2383

    Google Scholar 

  13. Ottakam Thotiyl MM, Freunberger SA, Peng Z, Bruce PG (2013) The carbon electrode in nonaqueous Li-O2 cells. J Am Chem Soc 135:494–500

    Article  CAS  Google Scholar 

  14. McCloskey BD, Speidel A, Scheffler R, Miller DC, Viswanathan V, Hummelshoj JS, Norskov JK, Luntz AC (2012) Twin problems of interfacial carbonate formation in nonaqueous Li-O2 batteries. The journal of physical chemistry letters 3:997–1001

    Article  CAS  Google Scholar 

  15. Ottakam Thotiyl MM, Freunberger SA, Peng Z, Chen Y, Liu Z, Bruce PG (2013) A stable cathode for the aprotic Li-O2 battery. Nat Mater 12:1050–1056

    Article  CAS  Google Scholar 

  16. Cheng F, Chen J (2012) Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chem Soc Rev 41:2172–2192

    Article  CAS  Google Scholar 

  17. Zhang GQ, Zheng JP, Liang R, Zhang C, Wang B, Au M, Hendrickson M, Plichta EJ (2011) α-MnO2/carbon nanotube/carbon nanofiber composite catalytic air electrodes for rechargeable lithium-air batteries. J Electrochem Soc 158:A822–A827

    Article  CAS  Google Scholar 

  18. Wang F, Wen Z, Shen C, Rui K, Wu X, Chen C (2015) Open mesoporous spherical shell structured Co3O4with highly efficient catalytic performance in Li–O2batteries. J Mater Chem A 3:7600–7606

    Article  CAS  Google Scholar 

  19. Wittmaier D, Aisenbrey S, Wagner N, Friedrich KA (2014) Bifunctional, carbon-free nickel/cobalt-oxide cathodes for lithium-air batteries with an aqueous alkaline electrolyte. Electrochim Acta 149:355–363

    Article  CAS  Google Scholar 

  20. Débart A, Bao J, Armstrong G, Bruce PG (2007) An O2 cathode for rechargeable lithium batteries: the effect of a catalyst. J Power Sources 174:1177–1182

    Article  Google Scholar 

  21. Peng S, Hu Y, Li L, Han X, Cheng F, Srinivasan M, Yan Q, Ramakrishna S, Chen J (2015) Controlled synthesis of porous spinel cobaltite core-shell microspheres as high-performance catalysts for rechargeable Li–O2 batteries. Nano Energy 13:718–726

    Article  CAS  Google Scholar 

  22. Wang H, Yang Y, Liang Y, Zheng G, Li Y, Cui Y, Dai H (2012) Rechargeable Li–O2 batteries with a covalently coupled MnCo2O4–graphene hybrid as an oxygen cathode catalyst. Energy & Environmental Science 5:7931

    Article  CAS  Google Scholar 

  23. Hamdani M, Singh RN, Chartier P (2010) Co3O4 and Co- based spinel oxides bifunctional oxygen electrodes. Int J Electrochem Sci 5:556–577

    CAS  Google Scholar 

  24. Brik MG, Suchocki A, Kaminska A (2014) Lattice parameters and stability of the spinel compounds in relation to the ionic radii and electronegativities of constituting chemical elements. Inorg Chem 53:5088–5099

    Article  CAS  Google Scholar 

  25. Marco JF, Gancedo JR, Ortiz J, Gautier JL (2004) Characterization of the spinel-related oxides NixCo3 − xO4 (x = 0.3,1.3,1.8) prepared by spray pyrolysis at 350 °C. Appl Surf Sci 227:175–186

    Article  CAS  Google Scholar 

  26. Rios E, Nguyen-Cong H, Marco JF, Gancedo JR, Chartier P, Gautier JL (2000) Indirect oxidation of ethylene glycol by peroxide ions at Ni0.3Co2.7O4 spinel oxide thin film electrodes. Electrochim Acta 45:4331–4440

    Article  Google Scholar 

  27. Pyke D, Mallick KK, Reynolds R, Bhattacharya AK (1998) Surface and bulk phases in substituted cobalt oxide spinels.J. Mater Chem 8:1095–1098

    Article  CAS  Google Scholar 

  28. Kim KJ, Koh TY (2015) Cationic structure and charge transport in sol–gel-derived nickel-cobaltite thin films. J Sol-Gel Sci Technol 77:528–533

    Article  Google Scholar 

  29. Karthick SN, Hemalatha KV, Justin Raj C, Kim HJ, Yi M (2013) Synthesis of nano-bound microsphere Co3O4 by simple polymer-assisted sol–gel technique. J Nanopart Res 15:1474

    Article  Google Scholar 

  30. Newsome TE, Olesik SV (2014) Electrospinning silica/Polyvinylpyrrolidone composite nanofibers. J Appl Polym Sci 131:40966

    Article  Google Scholar 

Download references

Acknowledgements

Authors wish to thank National Research Foundation, Prime Minister’s Office, Singapore for financial support under its Competitive Research Programme (CRP Award No. NRF-CRP 10-2012-6). Authors would like to thank Dr. Dorsasadat Safanama for help with electrochemical studies and Mr. Henche Kuan, Dept. of MSE, NUS help with TGA analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Adams.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, A., Reddy, M. & Adams, S. Synthesis and application of nanostructured MCo2O4(M=Co, Ni) for hybrid Li-air batteries. Ionics 23, 2589–2602 (2017). https://doi.org/10.1007/s11581-016-1913-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1913-9

Keywords

Navigation