Skip to main content
Log in

Investigation of Pr0.2Ce0.8O2-δ@Li2CO3 nanocomposite electrolytes as intermediate temperature ionic conductors: a thermal, structural, and morphological insight

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Pr0.2Ce0.8O2-δ@Li2CO3 (PDC-LC) nanocomposite electrolytes were prepared through the co-precipitation of Pr-doped cerium/lithium complex carbonate and its pre-firing and sintering operations. The structural and thermal properties of PDC-LC nanocomposite were investigated by means of X-ray diffraction, thermogravimetric analysis, Raman spectroscopy, and electrochemical impedance spectroscopy. The remarkable presence of oxygen vacancies and the influence of the interfacial interactions between PDC crystallites and amorphous Li2CO3 were deliberately probed by Raman spectroscopy and FEG-SEM, respectively. It was observed that there is a long-range interaction between the PDC crystallites and Li2CO3 phase, which resulted in the tight binding of \( {\mathrm{CO}}_3^{2-} \) ions on the facets of PDC nano-crystals and may be well characterized by the shift and broadening of the characteristic Raman spectroscopic peaks of \( {\mathrm{CO}}_3^{2-} \) ions in the samples. The X-ray diffraction results confirm the successful incorporation of praseodymium into ceria phase that presented the sole crystalline structure contrarily to the lithium carbonate present as an amorphous phase in the as-prepared samples. The oxygen ionic conductivity behaviors of PDC-LC phase were measured at the intermediate operating temperature range (300–500 °C). However, AC conductivity measurements demonstrated that the conductivities in air atmosphere increased linearly with temperature. The Arrhenius plot of total conductivity showed two different slopes indicating two distinct conduction mechanisms. The interfacial interactions between the PDC and LC phase inside the PDC-LC nanocomposite were responsible for oxygen ionic conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chroneos A, Yildiz B, Tarancón A, Parfitt D, Kilner JA (2011) Oxygen diffusion in solid oxide fuel cell cathode and electrolyte materials: mechanistic insights from atomistic simulations. Energy Environ Sci 4(8):2774–2789

    Article  CAS  Google Scholar 

  2. Wachsman ED, Lee KT (2011) Lowering the temperature of solid oxide fuel cells. Science 334(6058):935–939

    Article  CAS  Google Scholar 

  3. Zhang Y, Knibbe R, Sunarso J, Zhong Y, Zhou W, Shao Z, Zhu Z (2017) Recent progress on advanced materials for solid-oxide fuel cells operating below 500 °C. Adv Mater 29(48):1–33

    Google Scholar 

  4. Duan C, Tong J, Shang M, Nikodemski S, Sanders M, Ricote S, Almansoori A, O'Hayre R (2015) Readily processed protonic ceramic fuel cells with high performance at low temperatures. Science 349(6254):1–6

    Article  Google Scholar 

  5. Gao Z, Mogni LV, Miller EC, Railsback JG, Barnett SA (2016) A perspective on low-temperature solid oxide fuel cells. Energy Environ Sci 9(5):1602–1644

    Article  CAS  Google Scholar 

  6. Leng YJ, Chan SH, Khor KA, Jiang SP (2004) Performance evaluation of anode-supported solid oxide fuel cells with thin film YSZ electrolyte. Int J Hydrog Energy 29(10):1025–1033

    Article  CAS  Google Scholar 

  7. Liu J, Barnett SA (2003) Operation of anode-supported solid oxide fuel cells on methane and natural gas. J Solid State Ionics 158(1–2):11–16

    Article  CAS  Google Scholar 

  8. Hui S, Roller J, Yick S, Zhang X, Deces-Petit C, Xie Y, Maric R, Ghosh D (2007) A brief review of the ionic conductivity enhancement for selected oxide electrolytes. J Power Sources 172(2):493–502

    Article  CAS  Google Scholar 

  9. Singhal SC, Kendall K (2003) High-temperature solid oxide fuel cells: fundamentals, design and applications. Elsevier Science Ltd, pp 1–406. https://doi.org/10.1016/B978-1-85617-387-2.X5016-8

  10. Butz B, Kruse P, Stormer H, Gerthsen D, Muller A, Weber A, Ivers-Tiffee E (2006) Correlation between microstructure and degradation in conductivity for cubic Y2O3-doped ZrO2. Solid State Ionics 177(37–38):3275–3284

    Article  CAS  Google Scholar 

  11. Benamira M, Ringuedé A, Albin V, Vannier R-N, Hildebrandt L, Lagergren C, Cassir M (2011) Gadolinia-doped ceria mixed with alkali carbonates for solid oxide fuel cell applications: I. A thermal, structural and morphological insight. J Power Sources 196(13):5546–5554

    Article  CAS  Google Scholar 

  12. Chockalingam R, Basu S (2016) Impedance spectroscopy studies of Gd-CeO2-(LiNa)CO3 nanocomposite electrolytes for low temperature SOFC application. Int J Hydrog Energy 36(22):14977–14983

    Article  Google Scholar 

  13. Huang J, Gao Z, Mao Z (2010) Effects of salt composition on the electrical properties of samaria-doped ceria/carbonate composite electrolytes for low-temperature SOFCs. Int J Hydrog Energy 35(9):4270–4275

    Article  CAS  Google Scholar 

  14. Gao Z, Raza R, Zhu B, Mao Z, Wang C, Liu Z (2011) Preparation and characterization of Sm0.2Ce0.8O1.9/Na2CO3nanocomposite electrolyte for low-temperature solid oxide fuel cells. Int J Hydrog Energy 36(6):3984–3988

    Article  CAS  Google Scholar 

  15. Di J, Chen M, Wang C, Zheng J, Fan L, Zhu B (2010) Samarium doped ceria–(Li/Na)2CO3 composite electrolyte and its electrochemical properties in low temperature solid oxide fuel cell. J Power Sources 195(15):4695–4699

    Article  CAS  Google Scholar 

  16. Di J, Chen MM, Wang CY, Zheng JM, Zhu B (2010) Low temperature solid oxide fuel cells with SDC-carbonate electrolytes. Adv Mater Res 105:687–690

    Article  Google Scholar 

  17. Tang Z, Lin Q, Mellander B, Zhu B (2010) SDC–LiNa carbonate composite and nanocomposite electrolytes. Int J Hydrog Energy 35(7):2970–2975

    Article  CAS  Google Scholar 

  18. Cai T, Zeng Y, Yin S, Wang L, Li C (2011) Preparation and characterization of Ce0.8Sm0.2O1.9(SDC)-carbonates composite electrolyte via molten salt infiltration. Mater Lett 65(17):2751–2754

    Article  CAS  Google Scholar 

  19. Ma Y, Wang X, Raza R, Muhammed M, Zhu B (2010) Thermal stability study of SDC/Na2CO3 nanocomposite electrolyte for low-temperature SOFCs. Int J Hydrog Energy 35(7):2580–2585

    Article  CAS  Google Scholar 

  20. Zhang L, Lan R, Xu X, Tao S, Jiang Y, Kraft A (2009) A high performance intermediate temperature fuel cell based on a thick oxide–carbonate electrolyte. J Power Sources 194(2):967–971

    Article  CAS  Google Scholar 

  21. Liu W, Liu Y, Li B, Sparks TD, Wei X, Pan W (2010) Ceria (Sm3+, Nd3+)/carbonates composite electrolytes with high electrical conductivity at low temperature. Compos Sci Technol 70(1):181–185

    Article  CAS  Google Scholar 

  22. Raza R, Wang X, Ma Y, Zhu B (2010) Study on calcium and samarium co-doped ceria based nanocomposite electrolytes. J Power Sources 195(19):6491–6495

    Article  CAS  Google Scholar 

  23. Rafique A, Raza R, Akram N, Ullah MK, Ali A, Irshad M, Siraj K, Khan MA, Zhu B, Dawson R (2015) Significance enhancement in the conductivity of core shell nanocomposite electrolytes. RSC Adv 5(105):86322–86329

    Article  CAS  Google Scholar 

  24. Fan L, Zhang G, Chen M, Wang C, Di J, Zhu B (2012) Proton and oxygen ionic conductivity of doped ceria-carbonate composite by modified wagner polarization. Int J Electrochem Sci 7(9):8420–8435

    CAS  Google Scholar 

  25. Zhu B (2003) Functional ceria-salt-composite materials for advanced ITSOFC applications. J Power Sources 114(1):1–9

    Article  CAS  Google Scholar 

  26. Fan L, Wang C, Chen M, Zhu B (2013) Recent development of ceria-based (nano)composite materials for low temperature ceramic fuel cells and electrolyte-free fuel cells. J Power Sources 234:154–174

    Article  CAS  Google Scholar 

  27. Xia C, Li Y, Tian Y, Liu Q, Zhao Y, Jia L, Li Y (2009) A high performance composite ionic conducting electrolyte for intermediate temperature fuel cell and evidence for ternary ionic conduction. J Power Sources 188(1):156–162

    Article  CAS  Google Scholar 

  28. Zhao Y, Xia C, Jia L, Wang Z, Li H, Yu J, Li Y (2013) Recent progress on solid oxide fuel cell: Lowering temperature and utilizing non-hydrogen fuels. Int J Hydrog Energy 38(36):16498–16517

    Article  CAS  Google Scholar 

  29. Rietveld H (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2(2):65–71

    Article  CAS  Google Scholar 

  30. McCusker LB, Von Dreele RB, Cox DE, Louër D, Scardi P (1999) Rietveld refinement guidelines. J Appl Crystallogr 32:36–50

    Article  CAS  Google Scholar 

  31. Rodríguez-Carvajal J (1993) Recent advances in magnetic structure determination by neutron powder diffraction. J Phys B Condens Matter 192(1–2):55–69

    Article  Google Scholar 

  32. Berar J-F, Baldinozzi G (1993) Modeling of line-shape asymmetry in powder diffraction. J Appl Crystallogr 26(1):128–129

    Article  Google Scholar 

  33. Dastan D (2017) Effect of preparation methods on the properties of titania nanoparticles: solvothermal versus sol-gel. Appl Phys A Mater Sci Process 123(699):1–13

    CAS  Google Scholar 

  34. Li C, Zeng Y, Wang Z, Ye Z, Zhang Y (2017) Processing temperature tuned interfacial microstructure and protonic and oxide ionic conductivities of well-sintered Sm0.2Ce0.8O1.9- Na2CO3 nanocomposite electrolytes for intermediate temperature solid oxide fuel cells. J Power Sources 360:114–123

    Article  CAS  Google Scholar 

  35. Yin S, Zeng Y, Li C, Chen X, Ye Z (2013) Investigation of Sm0.2Ce0.8O1.9/Na2CO3 nanocomposite electrolytes: preparation, interfacial microstructures, and ionic conductivities. ACS Appl Mater Interfaces 5(24):12876–12886

    Article  CAS  Google Scholar 

  36. Li C, Zeng Y, Wang Z, Ye Z, Zhang Y, Shi R (2016) Preparation of SDC–NC nanocomposite electrolytes with elevated densities: influence of prefiring and sintering treatments on their microstructures and electrical conductivities. RSC Adv 6(102):99615–99624

    Article  CAS  Google Scholar 

  37. Dastan D, Londhe PU, Chaure NB (2014) Characterization of TiO2 nanoparticles prepared using different surfactants by sol-gel method. J Mater Sci Mater Electron 25(8):3473–3479

    Article  CAS  Google Scholar 

  38. Dastan D, Panahi SL, Yengntiwar AP, Banpurkar AG (2016) Morphological and electrical studies of titania powder and films grown by aqueous solution method. Adv Sci Lett 22(4):950–953

    Article  Google Scholar 

  39. Dastan D, Chaure N, Kartha M (2017) Surfactants assisted solvothermal derived titania nanoparticles: synthesis and simulation. J Mater Sci Mater Electron 28(11):7784–7796

    Article  CAS  Google Scholar 

  40. Dastan D, Panahi SL, Chaure NB (2016) Characterization of titania thin films grown by dip-coating technique. J Mater Sci Mater Electron 27(12):12291–12296

    Article  CAS  Google Scholar 

  41. Ţălu Ş (2015) Micro and nanoscale characterization of three dimensional surfaces: basics and applications. Napoca Star Publishing House, Cluj-Napoca

    Google Scholar 

  42. Dastan D, Chaure NB (2014) Influence of surfactants on TiO2 nanoparticles grown by Sol-Gel Technique. J Mater Mech Manufact 2(1):21–24

    CAS  Google Scholar 

  43. Zhao Y, Xu Z, Xia C, Li Y (2013) Oxide ion and proton conduction in doped ceria–carbonate composite materials. Int J Hydrog Energy 38(3):1553–1559

    Article  CAS  Google Scholar 

  44. Muhammed Ali SA, Rosli RE, Muchtar A, Sulong AB, Somalu MR, Majlan EH (2015) Effect of sintering temperature on surface morphology and electrical properties of samarium-doped ceria carbonate for solid oxide fuel cells. J Ceram Int 41(1):1323–1332

    Article  CAS  Google Scholar 

  45. Dastan D, Banpurkar A (2017) Solution processable sol-gel derived titania gate dielectric for organic field effect transistors. J Mater Sci Mater Electron 28(4):3851–3859

    Article  CAS  Google Scholar 

  46. Uthayakumar A, Pandiyan A, Mathiyalagan S, Kumar A, Keshri AK, Omar S, Balani K, Moorthy SBK (2016) Interfacial effect of the oxygen-ion distribution on the conduction mechanism in strontium-added Ce0.8Sm0.2O2−δ/Na2CO3 nanocomposite. J Phys Chem C 120(43):25068–25077

    Article  CAS  Google Scholar 

  47. Dastan D (2015) Nanostructured anatase titania thin films prepared by sol-gel dip coating technique. J. Atomic, Molecul. Condensate Nano Phys 2(2):109–114

    Google Scholar 

  48. Panahi SL, Dastan D, Chaure NB (2016) Characterization of zirconia nanoparticles grown by sol–gel method. Adv Sci Lett 22(4):941–944

    Article  Google Scholar 

  49. Esther Jeyanthi C, Siddheswaran R, Kumar P, Chinnu MK, Rajarajan K, Jayavel R (2015) Investigation on synthesis, structure, morphology, spectroscopic and electrochemical studies of praseodymium-doped ceria nanoparticles by combustion method. J Mater Chem Phys 15:22–28

    Article  Google Scholar 

  50. Ahn K, Yoo DS, Prasad DH, Lee H, Chung Y, Lee J (2012) Role of multivalent Pr in the formation and migration of oxygen vacancy in Pr-doped ceria: experimental and first-principles investigations. J Chem Mater 24(21):4261–4267

    Article  CAS  Google Scholar 

  51. McBride JR, Hass KC, Pointdexter BD, Weber WH (1994) Raman and x-ray studies of Ce1−xRExO2−y, where RE=La, Pr, Nd, Eu, Gd, and Tb. J Appl Phys 76(4):2435–2441

    Article  CAS  Google Scholar 

  52. Mineshige A, Taji T, Muroi Y, Kobune M, Fujii S, Nishi N, Inaba M, Ogumi Z (2000) Oxygen chemical potential variation in ceria-based solid oxide fuel cells determined by Raman spectroscopy. J Solid State Ionics 135(1–4):481–485

    Article  CAS  Google Scholar 

  53. Paunović N, Dohčević-Mitrović Z, Curtu R, Aškrabić S, Prekajski M, Matović B, Popović ZV (2012) Suppression of inherent ferromagnetism in Pr-doped CeO2 nanocrystals. Nanoscale 4(17):5469–5476

    Article  Google Scholar 

  54. Shajahan I, Ahn J, Nair P, Medisetti S, Patil S, Niveditha V, Uday Bhaskar Babu G, Prasad Dasari H, Lee J-H (2018) Praseodymium doped ceria as electrolyte material for IT-SOFC applications. J Mater Chem Phys 216:136–142

    Article  CAS  Google Scholar 

  55. Anwar MS, Kumar S, Ahmed F, Arshi N, Seo YJ, Lee CG, Koo BH (2011) Study of nanocrystalline ceria thin films deposited by e-beam technique. Curr Appl Phys 11(11):301–304

    Article  Google Scholar 

  56. Brooker MH, Bates JB (1971) Raman and infrared spectral studies of anhydrous Li2CO3 and Na2CO3. Chem Phys 54(11):4788–4796

    CAS  Google Scholar 

  57. Friesen G, Ozsar ME, Dunlop E (n.d.) Impedance model for CdTe solar cells exhibiting constant phase element behavior. Thin Solid Films 361–362:303–308

  58. Pant M, Kanchan DK, Sharma P, Jayswal MS (2008) Mixed conductivity studies in silver oxide based barium vanado–tellurite glasses. Mater Sci Eng B 149(1):18–25

    Article  CAS  Google Scholar 

  59. Jonscher AK (1977) The ‘universal’ dielectric response. Nature 267:673–679

    Article  CAS  Google Scholar 

  60. Dastan D, Gosavi WS, Chaure BN (2015) Studies on electrical properties of hybrid polymeric gate dielectric for field effect transistors. Macromol Symp 347:81–86

    Article  CAS  Google Scholar 

  61. Midouni A, Houchati MI, Belhaj Othman W, Chniba-Boudjada N, Jaouadi M, Ceretti M, Paulus W, Hamzaoui AH (2016) Influence of nickel doping on oxygen-ionic conductivity of the n = 1 Ruddlesden-Popper phases La1.85Ca0.15(Cu1−xNix)O4−δ (δ = 0.0905). J Solid State Chem 240:101–108

  62. Aarthi U, Arunkumar P, Sribalaji M, Kumar Keshrib A, Suresh Babu K (2016) Strontium mediated modification of structure and ionic conductivity in samarium doped ceria/sodium carbonate nanocomposites as electrolytes for LTSOFC. RSC Adv 6(88):84860–84870

    Article  CAS  Google Scholar 

  63. Rahmawati F, Nuryanto A, Nugrahaningtyas KD (2016) The single cell of low temperature solid oxide fuel cell with sodium carbonate-SDC (samarium-doped ceria) as electrolyte and biodiesel as fuel. IOP Conference Series: Materials Science and Engineering, vol 107, p 012035

    Google Scholar 

  64. Ali A, Rafique A, Kaleemullah M, Abbas G, Khan MA, Ahmad MA, Raza R (2018) Effect of alkali carbonates (single, binary, and ternary) on doped ceria: a composite electrolyte for low-temperature solid oxide fuel cells. ACS Appl Mater Interfaces 10(1):806–818

    Article  CAS  Google Scholar 

  65. Maheshwari A, Wiemhofer HD (2016) Augmentation of grain boundary conductivity in Ca2+ doped ceria-carbonate-composite. Acta Mater 103:361–369

    Article  CAS  Google Scholar 

  66. Lapa CM, Figueiredo FML, de Souza DPF, Song L, Zhu B, Marques FMB (2010) Synthesis and characterization of composite electrolytes based on samaria-doped ceria and Na/Li carbonates. Int J Hydrog Energy 35(7):2953–2957

    Article  CAS  Google Scholar 

  67. Ristoiu T, Petrisor T, Gabor M, Rada S, Popa F, Ciontea L, Traian P (2012) Electrical properties of ceria/carbonate nanocomposites. J Alloys Compd 532:109–113

    Article  CAS  Google Scholar 

  68. Sadykov VA, Kuznetsova TG, Frolova-Borchert Yu V, Alikina GM, Lukashevich AI, Rogov VA, Muzykantov VS, Pinaeva LG, Sadovskaya EM, Ivanova Yu A, Paukshtis EA, Mezentseva NV, Batuev LC, Parmon VN, Neophytides S, Kemnitz E, Scheurell K, Mirodatos C, van Veen AC (2006) Fuel-rich methane combustion: role of the Pt dispersion and oxygen mobility in a fluorite-like complex oxide support. Catal Today 117(4):475–483

    Article  CAS  Google Scholar 

  69. Spiridigliozzi L, Dell'Agli G, Accardo G, Yoon SP, Frattini D (2019) Electro-morphological, structural, thermal and ionic conduction properties of Gd/Pr co-doped ceria electrolytes exhibiting mixed Pr3+/Pr4+ cations. Ceram Int 45(4):4570–4580

    Article  CAS  Google Scholar 

Download references

Funding

Financial support was received from the EMORI MOBIDOC (Project funded by the European Union) Postdoctoral Research Fellowship Program from national agency for the promotion of scientific research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adnene Midouni.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Midouni, A., Houchati, M.I., Selmi, W. et al. Investigation of Pr0.2Ce0.8O2-δ@Li2CO3 nanocomposite electrolytes as intermediate temperature ionic conductors: a thermal, structural, and morphological insight. J Solid State Electrochem 23, 2465–2475 (2019). https://doi.org/10.1007/s10008-019-04338-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04338-x

Navigation