Skip to main content
Log in

Bimetallic nanowire sensors for extracellular electrochemical hydrogen peroxide detection in HL-1 cell culture

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The present study of nanoelectrochemical sensors prepared by directed electrochemical nanowire assembly (DENA) is defined by the requirements of electrochemical analysis, where the transducer function of metallic nanowires is synergetically combined with their electrochemical catalytic activity with respect to a particular analyte. We show for the first time that this technique can be employed for metals (Pd, Au) and their bimetallic compositions to create various multicomponent sensor nanomaterials on a single chip without the use of multistep lithography for the spatially resolved analysis of solutions. The nanostructures of various compositions can be individually addressed when used in liquid media, so that the particular surface properties of the individual nanoarray elements can be used for the electrochemical analysis of specific analytes. The sensor application of these devices in electrolytes and cell culture conditions has been demonstrated for the first time. As an example, the Pd-Au nanowires prepared by DENA were used for a non-enzymatic analysis of H2O2 with a linear concentration interval of 10−6–10−3 M, sensitivity of 18 μA M−1, and detection limit of 3 × 10−7 M at as low absolute value of the detection potential as − 0.05 V. This sensor was also proven for the detection of hydrogen peroxide in HL-1 cell culture, demonstrating good biocompatibility and support for the cell culture conditions. Using various DENA-grown electrochemical compositions on a single chip, a novel multisensor platform is proposed for the determination of various analytes in electrolyte solutions for biocompatible sensor arrays, flexible multianalyte environmental and technological process monitoring, and healthcare areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59(3):527–605

    Article  CAS  Google Scholar 

  2. Sedensky MM, Morgan PG (2006) Mitochondrial respiration and reactive oxygen species in mitochondrial aging mutants. Exp Gerontol 41(3):237–245. https://doi.org/10.1016/j.exger.2006.01.004

    Article  CAS  Google Scholar 

  3. Amatore C, Arbault S (2007) Oxidative stress at the single cell level. In: Michael AC, Borland LM (eds) Electrochemical methods for neuroscience. CRC Press/Taylor & Francis, Boca Raton (FL), p 261

    Google Scholar 

  4. Veal EA, Day AM, Morgan BA (2007) Hydrogen peroxide sensing and signaling. Mol Cell 26(1):1–14. https://doi.org/10.1016/j.molcel.2007.03.016

    Article  CAS  Google Scholar 

  5. Calas-Blanchard C, Catanante G, Noguer T (2014) Electrochemical sensor and biosensor strategies for ROS/RNS detection in biological systems. Electroanalysis 26(6):1277–1286. https://doi.org/10.1002/elan.201400083

    Article  CAS  Google Scholar 

  6. Bachi A, Dalle-Donne I, Scaloni A (2013) Redox proteomics: chemical principles, methodological approaches and biological/biomedical promises. Chem Rev 113(1):596–698. https://doi.org/10.1021/cr300073p

    Article  CAS  Google Scholar 

  7. Merksamer PI, Liu Y, He W, Hirschey MD, Chen D, Verdin E (2013) The sirtuins, oxidative stress and aging: an emerging link. Aging 5(3):144–150. 10.18632/aging.100544

    Article  CAS  Google Scholar 

  8. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408(6809):239–247. https://doi.org/10.1038/35041687

    Article  CAS  Google Scholar 

  9. Crulhas BP, Ramos NP, Castro GR, Pedrosa VA (2016) Detection of hydrogen peroxide releasing from prostate cancer cell using a biosensor. J Solid State Electrochem 20(9):2427–2433. https://doi.org/10.1007/s10008-016-3182-y

    Article  CAS  Google Scholar 

  10. Koposova E, Liu X, Kisner A, Ermolenko Y, Shumilova G, Offenhäusser A, Mourzina Y (2014) Bioelectrochemical systems with oleylamine-stabilized gold nanostructures and horseradish peroxidase for hydrogen peroxide sensor. Biosens Bioelectron 57:54–58. https://doi.org/10.1016/j.bios.2014.01.034

    Article  CAS  Google Scholar 

  11. Hao W-L, Li H-X, Shen C-Y, Liu S-L (2014) Nickel oxide hydroxide/platinum double layers modified n-silicon electrode for hydrogen peroxide determination. J Solid State Electrochem 18(4):1041–1047. https://doi.org/10.1007/s10008-013-2353-3

    Article  CAS  Google Scholar 

  12. Koposova E, Shumilova G, Ermolenko Y, Kisner A, Offenhäusser A, Mourzina Y (2015) Direct electrochemistry of cyt c and hydrogen peroxide biosensing on oleylamine- and citrate-stabilized gold nanostructures. Sensors and Actuators B-Chemical 207:1045–1052. https://doi.org/10.1016/j.snb.2014.07.105

    Article  CAS  Google Scholar 

  13. Arbault S, Pantano P, Jankowski JA, Vuillaume M, Amatore C (1995) Monitoring an oxidative stress mechanism at a single human fibroblast. Anal Chem 67(19):3382–3390. https://doi.org/10.1021/ac00115a004

    Article  CAS  Google Scholar 

  14. Jaime-González J, Mazario E, Menendez N, Sanchez-Marcos J, Muñoz-Bonilla A, Herrasti P (2016) Comparison of ferrite nanoparticles obtained electrochemically for catalytical reduction of hydrogen peroxide. J Solid State Electrochem 20(4):1191–1198. https://doi.org/10.1007/s10008-015-2938-0

    Article  Google Scholar 

  15. Zhang R, Chen W (2017) Recent advances in graphene-based nanomaterials for fabricating electrochemical hydrogen peroxide sensors. Biosensors Bioelectronics 89 Part 1:249–268

    Article  Google Scholar 

  16. Xiao F, Wang L, Duan H (2016) Nanomaterial based electrochemical sensors for in vitro detection of small molecule metabolites. Biotechnol Adv 34(3):234–249. https://doi.org/10.1016/j.biotechadv.2016.01.006

    Article  CAS  Google Scholar 

  17. Kondratiev VV, Pogulaichenko NA, Tolstopjatova EG, Malev VV (2011) Hydrogen peroxide electroreduction on composite PEDOT films with included gold nanoparticles. J Solid State Electrochem 15(11):2383–2393. https://doi.org/10.1007/s10008-011-1494-5

    Article  CAS  Google Scholar 

  18. Marquitan M, Clausmeyer J, Actis P, Córdoba AL, Korchev Y, Mark MD, Herlitze S, Schuhmann W (2016) Intracellular hydrogen peroxide detection with functionalised Nanoelectrodes. Chem Electro Chem 3(12):2125–2129. https://doi.org/10.1002/celc.201600390

    CAS  Google Scholar 

  19. Sitnikova NA, Komkova MA, Khomyakova IV, Karyakina EE, Karyakin AA (2014) Transition metal hexacyanoferrates in electrocatalysis of H2O2 reduction: an exclusive property of Prussian Blue. Anal Chem 86(9):4131–4134. https://doi.org/10.1021/ac500595v

    Article  CAS  Google Scholar 

  20. Yamada Y, Yoshida S, Honda T, Fukuzumi S (2011) Protonated iron-phthalocyanine complex used for cathode material of a hydrogen peroxide fuel cell operated under acidic conditions. Energy Environ Sci 4(8):2822–2825. https://doi.org/10.1039/c1ee01587g

    Article  CAS  Google Scholar 

  21. Wei Z, Xiaochuan D, Lieber CM (2017) Advances in nanowire bioelectronics. Rep Prog Phys 80(1):016701

    Article  Google Scholar 

  22. Zhu N, Han S, Gan S, Ulstrup J, Chi Q (2013) Graphene paper doped with chemically compatible Prussian Blue nanoparticles as Nanohybrid Electrocatalyst. Adv Funct Mater 23(42):5297–5306. https://doi.org/10.1002/adfm.201300605

    Article  CAS  Google Scholar 

  23. Nikolaev K, Ermakov S, Ermolenko Y, Averyaskina E, Offenhäusser A, Mourzina Y (2015) A novel bioelectrochemical interface based on in situ synthesis of gold nanostructures on electrode surfaces and surface activation by Meerwein’s salt. A bioelectrochemical sensor for glucose determination. Bioelectrochemistry 105:34–43. https://doi.org/10.1016/j.bioelechem.2015.05.004

    Article  CAS  Google Scholar 

  24. Ermakov SS, Nikolaev KG, Tolstoi VP (2016) Novel electrochemical sensors with electrodes based on multilayers fabricated by layer-by-layer synthesis and their analytical potential. Russ Chem Rev 85(8):880–900. https://doi.org/10.1070/RCR4605

    Article  CAS  Google Scholar 

  25. Zhang A, Lieber CM (2016) Nano-Bioelectronics. Chem Rev 116(1):215–257. https://doi.org/10.1021/acs.chemrev.5b00608

    Article  CAS  Google Scholar 

  26. Chen S, Yuan R, Chai Y, Hu F (2013) Electrochemical sensing of hydrogen peroxide using metal nanoparticles: a review. Microchim Acta 180(1–2):15–32. https://doi.org/10.1007/s00604-012-0904-4

    Article  CAS  Google Scholar 

  27. Chen XM, Wu GH, Cai ZX, Oyama M, Chen X (2014) Advances in enzyme-free electrochemical sensors for hydrogen peroxide, glucose, and uric acid. Microchim Acta 181(7–8):689–705. https://doi.org/10.1007/s00604-013-1098-0

    Article  CAS  Google Scholar 

  28. Flanders BN, Talukdar I, Ozturk B, Thapa P (United States Patent 8137526, 2012) Method of making an electrochemical nanowire assembly and attaching cells thereto. United States Patent,

    Google Scholar 

  29. Talukdar I, Ozturk B, Flanders BN, Mishima TD (2006) Directed growth of single-crystal indium wires. Appl Phys Lett 88(22):221907. https://doi.org/10.1063/1.2208431

    Article  Google Scholar 

  30. Yi X, Yu G, Chang F, Xie ZH, Tran TN, BN H, Zhong C-J (2014) Electrochemically controlled growth of Au Pt alloy nanowires and nanodendrites. Chem Asian J 9(9):2612–2620. https://doi.org/10.1002/asia.201402442

    Article  CAS  Google Scholar 

  31. Zhang M, Yang X, Zhou Z, Ye X (2013) Controllable growth of gold nanowires and nanoactuators via high-frequency AC electrodeposition. Electrochem Commun 27:133–136. https://doi.org/10.1016/j.elecom.2012.11.013

    Article  CAS  Google Scholar 

  32. Cheng C, Gonela RK, Gu Q, Haynie DT (2005) Self-assembly of metallic nanowires from aqueous solution. Nano Lett 5(1):175–178. https://doi.org/10.1021/nl048240q

    Article  CAS  Google Scholar 

  33. Kawasaki JK, Arnold CB (2011) Synthesis of platinum dendrites and nanowires via directed electrochemical nanowire assembly. Nano Lett 11(2):781–785. https://doi.org/10.1021/nl1039956

    Article  CAS  Google Scholar 

  34. Ozturk B, Bret NF, Daniel RG, Tetsuya DM (2007) Single-step growth and low resistance interconnecting of gold nanowires. Nanotechnology 18(17):175707. https://doi.org/10.1088/0957-4484/18/17/175707

    Article  Google Scholar 

  35. Ozturk B, Talukdar I, Bret NF (2007) Directed growth of diameter-tunable nanowires. Nanotechnology 18(36):365302. https://doi.org/10.1088/0957-4484/18/36/365302

    Article  Google Scholar 

  36. Ji J, Zhou Z, Yang X, Zhang W, Sang S, Li P (2013) One-dimensional nano-interconnection formation. Small 9(18):3014–3029. https://doi.org/10.1002/smll.201201318

    Article  CAS  Google Scholar 

  37. Xiang C, Kung S-C, Taggart DK, Yang F, Thompson MA, Güell AG, Yang Y, Penner RM (2008) Lithographically patterned nanowire electrodeposition: a method for patterning electrically continuous metal nanowires on dielectrics. ACS Nano 2(9):1939–1949. https://doi.org/10.1021/nn800394k

    Article  CAS  Google Scholar 

  38. Favier F, Walter EC, Zach MP, Benter T, Penner RM (2001) Hydrogen sensors and switches from electrodeposited palladium mesowire arrays. Science 293(5538):2227–2231. https://doi.org/10.1126/science.1063189

    Article  CAS  Google Scholar 

  39. Murray BJ, Walter EC, Penner RM (2004) Amine vapor sensing with silver mesowires. Nano Lett 4(4):665–670. https://doi.org/10.1021/nl049841k

    Article  CAS  Google Scholar 

  40. Ksar F, Ramos L, Keita B, Nadjo L, Beaunier P, Remita H (2009) Bimetallic palladium−gold nanostructures: application in ethanol oxidation. Chem Mater 21(15):3677–3683. https://doi.org/10.1021/cm901364w

    Article  CAS  Google Scholar 

  41. Wang D, Villa A, Porta F, Prati L, Su D (2008) Bimetallic gold/palladium catalysts: correlation between nanostructure and synergistic effects. J Phys Chem C 112(23):8617–8622. https://doi.org/10.1021/jp800805e

    Article  CAS  Google Scholar 

  42. Claycomb WC, Lanson NA, Stallworth BS, Egeland DB, Delcarpio JB, Bahinski A, Izzo NJ (1998) HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proc Natl Acad Sci U S A 95(6):2979–2984. https://doi.org/10.1073/pnas.95.6.2979

    Article  CAS  Google Scholar 

  43. White SM, Constantin PE, Claycomb WC (2004) Cardiac physiology at the cellular level: use of cultured HL-1 cardiomyocytes for studies of cardiac muscle cell structure and function. Am J Physiol Heart Circ Physiol 286(3):H823–H829. https://doi.org/10.1152/ajpheart.00986.2003

    Article  CAS  Google Scholar 

  44. Nerowski A, Poetschke M, Bobeth M, Opitz J, Cuniberti G (2012) Dielectrophoretic growth of platinum nanowires: concentration and temperature dependence of the growth velocity. Langmuir 28(19):7498–7504. https://doi.org/10.1021/la300302n

    Article  CAS  Google Scholar 

  45. Ozturk B, Blackledge C, Flanders BN, Grischkowsky DR (2006) Reproducible interconnects assembled from gold nanorods. Appl Phys Lett 88(7):073108. https://doi.org/10.1063/1.2174109

    Article  Google Scholar 

  46. Bangar MA, Ramanathan K, Yun M, Lee C, Hangarter C, Myung NV (2004) Controlled growth of a single palladium nanowire between microfabricated electrodes. Chem Mater 16(24):4955–4959. https://doi.org/10.1021/cm048931n

    Article  CAS  Google Scholar 

  47. Cheng Y, Yu G, Tang L, Zhou Y, Zhang G (2011) Self-assembled dendritic nanowires of au–Pt alloy through electrodeposition from solution under AC fields. J Cryst Growth 334(1):181–188. https://doi.org/10.1016/j.jcrysgro.2011.08.024

    Article  CAS  Google Scholar 

  48. Ji J, Li P, Sang S, Zhang W, Zhou Z, Yang X, Dong H, Li G, Hu J (2014) Electrodeposition of Au/Ag bimetallic dendrites assisted by faradaic AC-electroosmosis flow. AIP Adv 4(3):031329. https://doi.org/10.1063/1.4868518

    Article  Google Scholar 

  49. Tang LL, Yu G, Li XG, Chang FF, Zhong CJ (2015) Palladium-gold alloy nanowire-structured interface for hydrogen sensing. Chem Aust 80(4):722–730

    CAS  Google Scholar 

  50. Bockris JOM, Reddy AKN, Gamboa-Aldeco ME (2001) Modern electrochemistry 2A: fundamentals of electrodics. Springer US,

    Google Scholar 

  51. Nerowski A, Opitz J, Baraban L, Cuniberti G (2013) Bottom-up synthesis of ultrathin straight platinum nanowires: electric field impact. Nano Res 6(5):303–311. https://doi.org/10.1007/s12274-013-0303-0

    Article  CAS  Google Scholar 

  52. Harper CA (1997) Passive electronic component handbook. McGraw-Hill

  53. Mroczkowski RS (1998) Electronic connector handbook: theory and applications. McGraw-Hill

  54. Chen A, Ostrom C (2015) Palladium-based nanomaterials: synthesis and electrochemical applications. Chem Rev 115(21):11999–12044. https://doi.org/10.1021/acs.chemrev.5b00324

    Article  CAS  Google Scholar 

  55. Trasatti S (1986) The absolute electrode potential: an explanatory note (recommendations 1986). Pure Appl Chem 58(7). https://doi.org/10.1351/pac198658070955

  56. Pud S, Kisner A, Heggen M, Belaineh D, Temirov R, Simon U, Offenhäusser A, Mourzina Y, Vitusevich S (2013) Features of transport in ultrathin gold nanowire structures. Small 9(6):846–852. https://doi.org/10.1002/smll.201202197

    Article  CAS  Google Scholar 

  57. Muratova IS, Mikhelson KN, Ermolenko Y, Offenhäusser A, Mourzina Y (2016) On “resistance overpotential” caused by a potential drop along the ultrathin high aspect ratio gold nanowire electrodes in cyclic voltammetry. J Solid State Electrochem 20(12):3359–3365. https://doi.org/10.1007/s10008-016-3280-x

    Article  CAS  Google Scholar 

  58. Arblaster JW (2015) Selected electrical resistivity values for the platinum group of metals part I: palladium and platinum. Johnson Matthey. Technol Rev 59(3):174–181

    CAS  Google Scholar 

  59. Wissmann P, Finzel HU (2007) Electrical resistivity of thin metal films, vol Nr. 223. Springer

  60. Ustinova E, Gorchakov E, Kolpakova N (2012) Anodic stripping determination of Pt(IV) based on the anodic oxidation of in from electrochemically deposited Pt–in alloy phases. J Solid State Electrochem 16(7):2455–2458. https://doi.org/10.1007/s10008-011-1617-z

    Article  CAS  Google Scholar 

  61. Wang H, Bo X, Bai J, Wang L, Guo L (2011) Electrochemical applications of platinum–palladium alloy nanoparticles/large mesoporous carbon. J Electroanal Chem 662(2):281–287. https://doi.org/10.1016/j.jelechem.2011.06.020

    Article  CAS  Google Scholar 

  62. Zhou P, Dai Z, Fang M, Huang X, Bao J, Gong J (2007) Novel dendritic palladium nanostructure and its application in biosensing. J Phys Chem C 111(34):12609–12616. https://doi.org/10.1021/jp072898l

    Article  CAS  Google Scholar 

  63. Huang Y, Ferhan AR, Dandapat A, Yoon CS, Song JE, Cho EC, Kim D-H (2015) A strategy for the formation of gold–palladium supra-nanoparticles from gold nanoparticles of various shapes and their application to high-performance H2O2 sensing. J Phys Chem C 119(46):26164–26170. https://doi.org/10.1021/acs.jpcc.5b08423

    Article  CAS  Google Scholar 

  64. Goran JM, Phan ENH, Favela CA, Stevenson KJ (2015) H2O2 detection at carbon nanotubes and nitrogen-doped carbon nanotubes: oxidation, reduction, or disproportionation? Anal Chem 87(12):5989–5996. https://doi.org/10.1021/acs.analchem.5b00059

    Article  CAS  Google Scholar 

  65. Dong S, Xi J, Wu Y, Liu H, Fu C, Liu H, Xiao F (2015) High loading MnO2 nanowires on graphene paper: facile electrochemical synthesis and use as flexible electrode for tracking hydrogen peroxide secretion in live cells. Anal Chim Acta 853:200–206. https://doi.org/10.1016/j.aca.2014.08.004

    Article  CAS  Google Scholar 

  66. Manivel A, Anandan S (2011) Silver nanoparticles embedded phosphomolybdate–polyaniline hybrid electrode for electrocatalytic reduction of H2O2. J Solid State Electrochem 15(1):153–160. https://doi.org/10.1007/s10008-010-1080-2

    Article  CAS  Google Scholar 

  67. Siao H-W, Chen S-M, Lin K-C (2011) Electrochemical study of PEDOT-PSS-MDB-modified electrode and its electrocatalytic sensing of hydrogen peroxide. J Solid State Electrochem 15(6):1121–1128. https://doi.org/10.1007/s10008-010-1174-x

    Article  CAS  Google Scholar 

  68. Wang J, Cui L, Yin H, Dong J, Ai S (2012) Determination of hydrogen peroxide based on calcined layered double hydroxide-modified glassy carbon electrode in flavored beverages. J Solid State Electrochem 16(4):1545–1550. https://doi.org/10.1007/s10008-011-1551-0

    Article  CAS  Google Scholar 

  69. Li Y, Li Y, Yang Y (2012) A new amperometric H2O2 biosensor based on nanocomposite films of chitosan–MWNTs, hemoglobin, and silver nanoparticles. J Solid State Electrochem 16(3):1133–1140. https://doi.org/10.1007/s10008-011-1503-8

    Article  CAS  Google Scholar 

  70. Liu X, Luo L, Ding Y, Xu Y, Li F (2011) Hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase on γ-Al2O3 nanoparticles/chitosan film-modified electrode. J Solid State Electrochem 15(3):447–453. https://doi.org/10.1007/s10008-010-1120-y

    Article  CAS  Google Scholar 

  71. Wang L, Zhu H, Hou H, Zhang Z, Xiao X, Song Y (2012) A novel hydrogen peroxide sensor based on Ag nanoparticles electrodeposited on chitosan-graphene oxide/cysteamine-modified gold electrode. J Solid State Electrochem 16(4):1693–1700. https://doi.org/10.1007/s10008-011-1576-4

    Article  CAS  Google Scholar 

  72. Wu R, Chen X, Hu J (2012) Synthesis, characterization, and biosensing application of ZnO/SnO2 heterostructured nanomaterials. J Solid State Electrochem 16(5):1975–1982. https://doi.org/10.1007/s10008-011-1590-6

    Article  CAS  Google Scholar 

  73. Wang Y, Zhang H, Yao D, Pu J, Zhang Y, Gao X, Sun Y (2013) Direct electrochemistry of hemoglobin on graphene/Fe3O4 nanocomposite-modified glass carbon electrode and its sensitive detection for hydrogen peroxide. J Solid State Electrochem 17(3):881–887. https://doi.org/10.1007/s10008-012-1939-5

    Article  CAS  Google Scholar 

  74. Afraz A, Rafati AA, Hajian A (2013) Analytical sensing of hydrogen peroxide on Ag nanoparticles–multiwalled carbon nanotube-modified glassy carbon electrode. J Solid State Electrochem 17(7):2017–2025. https://doi.org/10.1007/s10008-013-2057-8

    Article  CAS  Google Scholar 

  75. da Silva JV, Pimentel DM, Souto DEP, de Cássia Silva Luz R, Damos FS (2013) Application of horseradish peroxidase/polyaniline/bis(2-aminoethyl) polyethylene glycol-functionalized carbon nanotube composite as a platform for hydrogen peroxide detection with high sensitivity at low potential. J Solid State Electrochem 17(11):2795–2804. https://doi.org/10.1007/s10008-013-2182-4

    Article  Google Scholar 

  76. Nalini S, Nandini S, Shanmugam S, Neelagund SE, Melo JS, Suresh GS (2014) Amperometric hydrogen peroxide and cholesterol biosensors designed by using hierarchical curtailed silver flowers functionalized graphene and enzymes deposits. J Solid State Electrochem 18(3):685–701. https://doi.org/10.1007/s10008-013-2305-y

    Article  CAS  Google Scholar 

  77. Prabhu P, Babu RS, Narayanan SS (2014) Synergetic effect of Prussian blue film with gold nanoparticle graphite–wax composite electrode for the enzyme-free ultrasensitive hydrogen peroxide sensor. J Solid State Electrochem 18(4):883–891. https://doi.org/10.1007/s10008-013-2288-8

    Article  CAS  Google Scholar 

  78. Liou G-Y, Storz P (2010) Reactive oxygen species in cancer. Free Radic Res 44(5):479–496. https://doi.org/10.3109/10715761003667554

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Grant (grant number 12.38.218.2015) from St. Petersburg State University is acknowledged for support of electrochemical studies. Thanks are due to M. Prömpers, E. Brauweiler-Reuters, Dr. A. Savenko for support with photolithography processes and structural analysis.

Funding

Grant (grant number 12.38.218.2015) from St. Petersburg State University is acknowledged for support of electrochemical studies. KN was supported by DAAD (Migration Mendeleev Forschungsstip. grant number 50024759).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulia G. Mourzina.

Electronic supplementary material

ESM 1

(DOCX 2028 kb)

ESM 2

(AVI 610 kb)

ESM 3

(AVI 544 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikolaev, K.G., Maybeck, V., Neumann, E. et al. Bimetallic nanowire sensors for extracellular electrochemical hydrogen peroxide detection in HL-1 cell culture. J Solid State Electrochem 22, 1023–1035 (2018). https://doi.org/10.1007/s10008-017-3829-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3829-3

Keywords

Navigation