Skip to main content
Log in

An enhanced poly(vinylidene fluoride) matrix separator with high density polyethylene for good performance lithium ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A sponge-like poly(vinylidene fluoride)/high density polyethylene (PVDF/HDPE) separator exhibiting high ionic conductivity and transference number of Li+ ion for lithium ion battery has been prepared by non-solvent induced phase separation (NIPS) method. HDPE fillers with size smaller than 250 nm are prepared with moderated reverse phase emulsion. The ion conductivity of PVDF/HDPE separator saturated with 1.0 M LiPF6–ethylene carbonate (EC)/dimethyl carbonate (DMC)/ethyl methyl carbonate (EMC) (1:1:1, v/v/v) can be up to 2.54 mS cm−1 at 25 °C, which is higher than that of pristine PVDF separator (1.85 mS cm−1). The transference number of lithium ion with PVDF/HDPE separator is 0.495, better than that with commercial PP separator (0.33) and pristine PVDF separator (0.27). What is more, LiCoO2/Li cells assembled with PVDF/HDPE separator show good C-rate and cycling performance which indicates great potential in serving as a good candidate of polymer separator for lithium ion batteries application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Scrosati B, Hassoun J, Sun YK (2011) Lithium-ion batteries. A look into the future. Energ Environ Sci 4(9):3287–3295

    Article  CAS  Google Scholar 

  2. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367

    Article  CAS  Google Scholar 

  3. Croce F, Focarete ML, Hassoun J, Meschini I, Scrosati B (2011) A safe, high-rate and high-energy polymer lithium-ion battery based on gelled membranes prepared by electrospinning. Energ Environ Sci 4(3):921–927

    Article  CAS  Google Scholar 

  4. Armand M, Tarascon JM (2008) Building better batteries. Nature 451(7179):652–657

    Article  CAS  Google Scholar 

  5. Chen B, Xu Q, Huang Z, Zhao Y, Chen S, Xu X (2016) One-pot preparation of new copolymer electrolytes with tunable network structure for all-solid-state lithium battery. J Power Sources 331:322–331

    Article  CAS  Google Scholar 

  6. Porcarelli L, Gerbaldi C, Bella F, Nair JR (2016) Super soft all-ethylene oxide polymer electrolyte for safe all-solid lithium batteries. Sci Rep 6:No.19892

    Article  Google Scholar 

  7. Nair JR, Destro M, Bella F, Appetecchi GB, Gerbaldi C (2016) Thermally cured semi-interpenetrating electrolyte networks (s-IPN) for safe and aging-resistant secondary lithium polymer batteries. J Power Sources 306:258–267

    Article  CAS  Google Scholar 

  8. Wu F, Tan GQ, Chen RJ, Li L, Xiang J, Zheng YL (2011) Novel solid-state Li/LiFePO4 battery configuration with a ternary nanocomposite electrolyte for practical applications. Adv Mater 23(43):5081–5085

    Article  CAS  Google Scholar 

  9. Pu WH, He XM, Wang L, Jiang CY, Wan CR (2006) Preparation of PVDF-HFP microporous membrane for Li-ion batteries by phase inversion. J Membr Sci 272(1–2):11–14

    Article  CAS  Google Scholar 

  10. Zhang SS (2007) A review on the separators of liquid electrolyte Li-ion batteries. J Power Sources 164(1):351–364

    Article  CAS  Google Scholar 

  11. Liao YH, Sun CJ, Hu SJ, Li WS (2013) Anti-thermal shrinkage nanoparticles/polymer and ionic liquid based gel polymer electrolyte for lithium ion battery. Electrochim Acta 89:461–468

    Article  CAS  Google Scholar 

  12. Jeong HS, Hong SC, Lee SY (2010) Effect of microporous structure on thermal shrinkage and electrochemical performance of Al2O3/poly(vinylidene fluoride-hexafluoropropylene) composite separators for lithium-ion batteries. J Membr Sci 364(1–2):177–182

    Article  CAS  Google Scholar 

  13. Lloyd D, Kinzer K, Tseng H (1990) Microporous membrane formation via thermally induced phase separation. I Solid-liquid phase separation J Membr Sci 52(3):239–261

    CAS  Google Scholar 

  14. Liu F, Hashim NA, Liu YT, Abed MRM, Li K (2011) Progress in the production and modification of PVDF membranes. J Membr Sci 375(1–2):1–27

    Article  CAS  Google Scholar 

  15. Xiao W, Zhao LN, Gong YQ, Liu JG, Yan CW (2015) Preparation and performance of poly(vinyl alcohol) porous separator for lithium-ion batteries. J Membr Sci 487:221–228

    Article  CAS  Google Scholar 

  16. Kim SH, Choi KH, Cho SJ, Kil EH, Lee SY (2013) Mechanically compliant and lithium dendrite growth-suppressing composite polymer electrolytes for flexible lithium-ion batteries. J Mater Chem A 1(16):4949–4955

    Article  CAS  Google Scholar 

  17. Witte PVD, Dijkstra PJ, Berg J, Feijen J (1996) Phase separation processes in polymer solutions in relation to membrane formation. J Membr Sci 117(1–2):1–31

    Article  Google Scholar 

  18. Man CZ, Jiang P, Wong KW, Zhao Y, Tang CY, Fan MK, Lau WM, Mei J, Li SM, Liu H, Hui D (2014) Enhanced wetting properties of a polypropylene separator for a lithium-ion battery by hyperthermal hydrogen induced cross-linking of poly(ethylene oxide). J Mater Chem A 2(30):11980–11986

    Article  CAS  Google Scholar 

  19. Wienk IM, Boom RM, Beerlage MAM, Bulte AMW, Smolders CA (1996) Recent advances in the formation of phase inversion separators made from amorphous or semi-crystalline polymers. J Membr Sci 113(2):361–371

    Article  CAS  Google Scholar 

  20. Liu HX, Liu JQ, Zhou Q, Wang JX (2013) Novel polymer electrolyte based on PVDF/HDPE blending for lithium-ion battery. Mater Lett 99:164–167

    Article  CAS  Google Scholar 

  21. Lloyd DR, Kim SS, Kinzer KE (1991) Microporous membrane formation via thermally induced phase separation. II Liquid—liquid phase separation J Membr Sci 84(261):1–11

    Google Scholar 

  22. Fang J, Kelarakis A, Lin YW, Kang CY, Yang MH, Cheng CL, Wang Y, Giannelis EP, Tsai LD (2011) Nanoparticle-coated separators for lithium-ion batteries with advanced electrochemical performance. Phys Chem Chem Phys 13(32):14457–14461

    Article  CAS  Google Scholar 

  23. Xiang HF, Chen JJ, Li Z, Wang HH (2011) An inorganic membrane as a separator for lithium-ion battery. J Power Sources 196(20):8651–8655

    Article  CAS  Google Scholar 

  24. Ryou MH, Lee YM, Park JK, Choi JW (2011) Mussel-inspired polydopamine-treated polyethylene separators for high-power Li-ion batteries. Adv Mater 23(27):3066–3070

    Article  CAS  Google Scholar 

  25. Wang HF, Li HB, Yu LJ, Jiang YM, Wang KX (2013) Synthesis of porous Al2O3-PVDF composite separators and their application in lithium-ion batteries. J Appl Polym Sci 130(4):2886–2890

    Article  CAS  Google Scholar 

  26. Venugopal G, Moore J, Howard J, Pendalwar S (1999) Characterization of microporous separators for lithium-ion batteries. J Power Sources 77(1):34–41

    Article  CAS  Google Scholar 

  27. Subramania A, Sundaram NTK, Priya AR, Gangadharan R, Vasudevan T (2005) Preparation of a microporous gel polymer electrolyte with a novel preferential polymer dissolution process for Li-ion batteries. J Appl Polym Sci 98(5):1891–1896

    Article  CAS  Google Scholar 

  28. Hwang K, Kwon B, Byun H (2011) Preparation of PVdF nanofiber membranes by electrospinning and their use as secondary battery separators. J Membr Sci 378(1–2):111–116

    Article  CAS  Google Scholar 

  29. Subramania A, Sundaram NTK, Kumar GV, Vasudevan T (2006) New polymer electrolyte based on (PVA-PAN) blend for Li-ion battery applications. Ionics 12(2):175–178

    Article  CAS  Google Scholar 

  30. Choi ES, Lee SY (2011) Particle size-dependent, tunable porous structure of a SiO2/poly(vinylidene fluoride-hexafluoropropylene)-coated poly(ethylene terephthalate) nonwoven composite separator for a lithium-ion battery. J Mater Chem 21(38):14747–14754

    Article  CAS  Google Scholar 

  31. Chen JJ, Wang SQ, Cai DD, Wang HH (2014) Porous SiO2 as a separator to improve the electrochemical performance of spinel LiMn2O4 cathode. J Membr Sci 449:169–175

    Article  CAS  Google Scholar 

  32. Kang W, Deng N, Ma X, Ju J, Lia L, Liu X, Cheng B (2016) A thermostability gel polymer electrolyte with electrospun nanofiber separator of organic F-doped poly-m-phenyleneisophthalamide for lithium-ion battery. Electrochim Acta 216:276–286

    Article  CAS  Google Scholar 

  33. Li W, Hicks-Garner J, Wang J, Liu J, Gross AF, Sherman E, Graetz J, Vajo JJ, Liu P (2014) V2O5 polysulfide anion barrier for long-lived Li-S batteries. Chem Mater 26(11):3403–3410

    Article  CAS  Google Scholar 

  34. Huang JQ, Zhang Q, Fei W (2015) Multi-functional separator/interlayer system for high-stable lithium-sulfur batteries: progress and prospects. Energy Storage Materials 1:127–145

    Article  Google Scholar 

  35. Zhu YS, Wang FX, Liu LL, Xiao SY, Chang Z, Wu YP (2013) Composite of a nonwoven fabric with poly(vinylidene fluoride) as a gel membrane of high safety for lithium ion battery. Energ Environ Sci 6(2):618–624

    Article  CAS  Google Scholar 

  36. He JY, Liu JQ, Li J, Lai YQ, Wu XF (2016) Enhanced ionic conductivity and electrochemical capacity of lithium ion battery based on PVDF-HFP/HDPE membrane. Mater Lett 170:126–129

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to give our sincere gratitude to the Project supported by the National Natural Science Foundation of China (Grant No. 20806094) and Science and Technology Key Program of Changsha, China (Grant No. k1403019-11) and Project Funded by China Postdoctoral Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiuqing Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., He, C., He, J. et al. An enhanced poly(vinylidene fluoride) matrix separator with high density polyethylene for good performance lithium ion batteries. J Solid State Electrochem 21, 919–925 (2017). https://doi.org/10.1007/s10008-016-3444-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3444-8

Keywords

Navigation