Skip to main content
Log in

Electrochemical properties of spinel Li4Ti5O12 nanoparticles prepared via a low-temperature solid route

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Spinel phase Li4Ti5O12 (s-LTO) with an average primary particle size of 150 nm was synthesised via a solid state route by calcining a precursor mixture at 600 °C. The precursor was prepared from a stoichiometric mixture of TiO2 nanoparticles and an ethanolic solution of Li acetate and activated by ball-milling. Effects of the calcination temperature and atmosphere are examined in relation to the coexistence of impurity phases by X-ray diffraction and 6Li MAS NMR. The charge capacity of s-LTO, determined from cyclic voltammogram at a scan rate of 0.1 mV/s, was 142 mAh/g. The capacity of our optimised material is superior to that of commercially available spinel (a-LTO), despite the considerably smaller BET-specific surface area of the former. The superior properties of our material were also demonstrated by galvanostatic charging/discharging. From these observations, we conclude that the presented low-temperature solid state synthesis route provides LTO with improved electrochemical performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Yi T-F, Jiang L-J, Shu J, Yue C-B, Zhu R-S, Qiao H-B (2010) Recent development and application of Li4Ti5O12 as anode material of lithium ion battery. J Phys Chem Solids 71:1236–1242

    Article  CAS  Google Scholar 

  2. Zhang Q, Peng W, Wang Z, Li X, Xiong X, Guo H, Wang Z, Wu F (2013) Li4Ti5O12/reduced graphene oxide composite as a high rate capability material for lithium ion batteries. Solid State Ionics 236:30–36

    Article  CAS  Google Scholar 

  3. Zaghib K (1998) Electrochemistry of anodes in solid-state Li-ion polymer batteries. J Electrochem Soc 145:3135–3140

    Article  CAS  Google Scholar 

  4. Kavan L, Procházka J, Spitler TM, Kalbáč M, Zukalová M, Drezen T, Grätzel M (2003) Li insertion into Li4Ti5O12 (spinel). J Electrochem Soc 150:A1000

    Article  CAS  Google Scholar 

  5. Naoi K (2010) ‘Nanohybrid capacitor’: the next generation electrochemical capacitors. Fuel Cells 10:825–833

    Article  CAS  Google Scholar 

  6. Zhu J, Zu W, Yang G, Song Q (2014) A novel electrochemical supercapacitor based on Li4Ti5O12 and LiNi1/3Co1/3Mn1/3O2. Mater Lett 115:237–240

    Article  CAS  Google Scholar 

  7. Chiu H, Brodusch N, Gauvin R, Guerfi A, Zaghib K, Demopoulos GP (2013) Aqueous synthesized nanostructured Li4Ti5O12 for high-performance lithium ion battery anodes. J Electrochem Soc 160:A3041–A3047

    Article  CAS  Google Scholar 

  8. Xue Y, Wang Z, Yu F, Zhang Y, Yin G (2014) Ethanol-assisted hydrothermal synthesis of LiNi0.5Mn1.5O4 with excellent long-term cyclability at high rate for lithium-ion batteries. J Mater Chem A 2:4185

    Article  CAS  Google Scholar 

  9. Kavan L, Grätzel M (2002) Facile synthesis of nanocrystalline Li4Ti5O12 (spinel) exhibiting fast Li insertion. Electrochem Solid-State Lett 5:A39

    Article  CAS  Google Scholar 

  10. Kalbac M, Zukalova M, Kavan L (2003) Phase-pure nanocrystalline Li4Ti5O12 for a lithium-ion battery. J Solid State Electrochem 8:2–6

    Article  CAS  Google Scholar 

  11. Zhu G-N, Wang Y-G, Xia Y-Y (2012) Ti-based compounds as anode materials for Li-ion batteries. Energy Environ Sci 5:6652

    Article  CAS  Google Scholar 

  12. Li J, Jin Y, Zhang X, Yang H (2007) Microwave solid-state synthesis of spinel Li4Ti5O12 nanocrystallites as anode material for lithium-ion batteries. Solid State Ionics 178(29–30):1590–1594

    Article  CAS  Google Scholar 

  13. Zaghib K, Simoneau M, Armand M, Gauthier M (1999) Electrochemical study of Li4Ti5O12 as negative electrode for Li-ion polymer rechargeable batteries. J Power Sources 81-82:300–305

    Article  CAS  Google Scholar 

  14. Liao J-F, Senna M (1993) Mechanochemical dehydration and amorphization of hzdroxides of Ca, Mg and Al on grinding with and without SiO2. Solid State Ionics 66:313–319

    Article  CAS  Google Scholar 

  15. Ando C, Suzuki T, Mizuno Y, Kishi H, Nakayama S, Senna M (2008) Evaluation of additive effects and homogeneity of the starting mixture on the nuclei-growth processes of barium titanate via a solid state route. J Mater Sci 43:6182–6192

    Article  CAS  Google Scholar 

  16. Senna M, Pavlic J, Rojac T, Malic B, Kosec M, Brennecka G (2014) Preparation of phase-pure K0.5Na0.5NbO3 fine powders by a solid-state reaction at 625 °C from a precursor comprising Nb2O5 and K, Na acetates. J Am Ceram Soc 97:413–419

    Article  CAS  Google Scholar 

  17. Malic B, Jenko D, Holc J, Hrovat M, Kosec M (2008) Synthesis of sodium potassium niobate: a diffusion couples study. J Am Ceram Soc 91:1916–1922

    Article  CAS  Google Scholar 

  18. Shin J-W, Hong C-H, Yoon D-H, Dudney N (2012) Effects of TiO2 starting materials on the solid-state formation of Li4Ti5O12. J Am Ceram Soc 95:1894–1900

    Article  CAS  Google Scholar 

  19. Liu W, Zhang J, Wang Q, Xie X, Lou Y, Han X, Xia B (2013) Microsized TiO2 activated by high-energy ball milling as starting material for the preparation of Li4Ti5O12 anode material. Powder Technol 247:204–210

    Article  CAS  Google Scholar 

  20. Sun X, Radovanovic PV, Cui B (2015) Advances in spinel Li4Ti5O12 anode materials for lithium-ion batteries. New J Chem 39(1):38–63

    Article  CAS  Google Scholar 

  21. Hong S-C, Hong H-P, Cho B-W, Na B-K (2010) Effect of heat treatment on electrochemical characteristics of spinel lithium titanium oxide. Korean J Chem Eng 27(1):91–95

    Article  CAS  Google Scholar 

  22. Yuan T, Cai R, Gu P, Shao Z (2010) Synthesis of lithium insertion material Li4Ti5O12 from rutile TiO2 via surface activation. J Power Sources 195(9):2883–2887

    Article  CAS  Google Scholar 

  23. Schnablegger H (1991) Optical sizing of small colloidal particles. Appl Opt 30(33):1889–1896

    Article  Google Scholar 

  24. Shen CM (2002) Preparation and characterization of nanocrystalline Li4Ti5O12 by sol-gel method. Mater Chem Phys 78:437–441

    Article  Google Scholar 

  25. Veljkovic I, Poleti D, Karanovic L, Zdujic M, Brankovic G (2011) Solid state synthesis of extra phase-pure Li4Ti5O12 spinel. Sci Sinter 43:343–351

    Article  CAS  Google Scholar 

  26. Laumann A, Boysen H, Bremholm M, Fehr KT, Hoelzel M, Holzapfel M (2011) Lithium migration at high temperatures in Li4Ti5O12 studied by neutron diffraction. Chem Mater 23(11):2753–2759

    Article  CAS  Google Scholar 

  27. Hugo AM, Pfeiffer H (2011) Kinetic analysis of the thermal decomposition of Li4Ti5O12 pellets. Process Appl Ceram 5:199–203

    Article  Google Scholar 

  28. Colbow KM, Dahn JR, Haering RR (1989) Structure and electrochemistry of the spinel oxides LiTiO4 and Li4/3Ti5/3O4. J Power Sources 26:397–402

    Article  CAS  Google Scholar 

  29. Ohzuku T, Ueda A, Yamamoto N (1995) Zero-strain insertion material of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells. J Electrochem Soc 142:1431–1435

    Article  CAS  Google Scholar 

  30. Yi T-F, Jiang L-J, Liu J, Ye M-F, Fang H-B, Zhou A-N, Shu J (2011) Structure and physical properties of Li4Ti5O12 synthesized at deoxidization atmosphere. Ionics 17:799–803

    Article  CAS  Google Scholar 

  31. Barreto L-S, Mort K-A, Jackson R-A, Alves O-L (2002) Molecular dynamics simulations of anhydrous lithium acetate. J Non-Cryst Solids 303:281–290

    Article  CAS  Google Scholar 

  32. Kearlay G-J, Nikolai B, Radelli P-G, Filleaux F (1996) The crystal structure and methyl group dynamics in the room-temperature and low-temperature phases of lithium acetate dihydrate. J Solid State Chem 126:184–188

    Article  Google Scholar 

  33. Šurca Vuk A, Jovanovski V, Pollet-Villard A, Jerman I, Orel B (2008) Imidazolium-based ionic liquid derivatives for application in electrochromic devices. Sol Energy Mater Sol Cells 92:126–135

    Article  Google Scholar 

  34. Zheng Z, Tang Z, Zhang Z, Shen W (2003) IR investigation and electrochemical properties of Li-doped spinel Li1+xMn2-xO4 prepared by a simplified technique. Russ J Electrochem 39:305–309

    Article  Google Scholar 

  35. Meshitsuka S, Takashi H, Higashi K (1971) Infrared spectra and lattice vibrations of Li2SO4 H2O. Bull Chem Soc Jpn 44:3255–3259

    Article  CAS  Google Scholar 

  36. Gao Y, Masuda Y, Peng Z, Yonezawa T, Koumoto K (2003) Room temperature deposition of a TiO2 thin film from aqueous peroxotitanate solution. J Mater Chem 13:608–613

    Article  CAS  Google Scholar 

  37. Zhang Q, Peng W, Wang Z, Li X, Xiong X, Guo H, Wang Z, Wu F (2012) Synthesis and characterization of Li4Ti5O12/graphene composite as anode material with enhanced electrochemical performance. Ionics 19:717–723

    Article  Google Scholar 

  38. Allen GCPM (1995) Chemical characterization of transition metal spinel-type oxides by infrared specgtroscopy. Appl Spectrosc 49:451–458

    Article  CAS  Google Scholar 

  39. Raja MW, Mahanty S, Kundu M, Basu RN (2009) Synthesis of nanocrystalline Li4Ti5O12 by a novel aqueous combustion technique. J Alloys Compd 468:258–262

    Article  CAS  Google Scholar 

  40. Frank O, Zukalova M, Laskova B, Kurti J, Koltai J, Kavan L (2012) Raman spectra of titanium dioxide (anatase, rutile) with identified oxygen isotopes (16, 17, 18). Phys Chem Chem Phys 14:14567–14572

    Article  CAS  Google Scholar 

  41. Lin J-Y, Hsu C-C, Ho H-P, Wu S-h (2013) Sol–gel synthesis of aluminum doped lithium titanate anode material for lithium ion batteries. Electrochim Acta 87:126–132

    Article  CAS  Google Scholar 

  42. Shimizu M, Usui H, Sakaguchi H (2016) Functional ionic liquids for enhancement of Li-ion transfer: the effect of cation structure on the charge-discharge performance of the Li4Ti5O12 electrode. Phys Chem Chem Phys 18:5139–5147

    Article  CAS  Google Scholar 

  43. Zhu W, Zhuang Z, Yang Y, Zhang R, Lin Z, Lin Y, Huang Z (2016) Synthesis and electrochemical performance of hole-rich Li4Ti5O12 anode material for lithium-ion secondary batteries. J Phys Chem Solids 93:52–58

    Article  CAS  Google Scholar 

  44. Yi T-F, Wu J-Z, Li M, Zhu Y-R, Xie Y, Zhu R-S (2015) Enhanced fast charge–discharge performance of Li4Ti5O12 as anode materials for lithium-ion batteries by Ce and CeO2 modification using a facile method. RSC Adv 5:37367–37376

    Article  CAS  Google Scholar 

  45. Julien CM, Massot M, Zaghib K (2004) Structural studies of Li4/3Me5/3O4 (Me = Ti, Mn) electrode materials: local structure and electrochemical aspects. J Power Sources 136(1):72–79

    Article  CAS  Google Scholar 

  46. Sinha MM, Gupta HC (2000) Study of phonons in superconducting oxide spinels (Li, Mg)1+xTi2-xO4. Phys Status Solidi B 221:689–692

    Article  CAS  Google Scholar 

  47. Kushwaha AK (2013) Lattice dynamical calculations for Li1+xTi2-xO4 (x = 0.33) and Li1-yMgyTi2O4 (y = 0.1, 0.3). Acta Phys Pol A 124:695–697

    Article  CAS  Google Scholar 

  48. Dolotko O, Senyshyn A, Mühlbauer MJ, Boysen H, Monchak M, Ehrenberg H (2014) Neutron diffraction study of Li4Ti5O12 at low temperatures. Solid State Sci 36:101–106

    Article  CAS  Google Scholar 

  49. Mukai K, Kato Y, Nakano H (2014) Understanding the zero-strain lithium insertion scheme of Li[Li1/3Ti5/3]O4: structural changes at atomic scale clarified by Raman spectroscopy. J Phys Chem C 118(6):2992–2999

    Article  CAS  Google Scholar 

  50. Qiu J, Lai C, Gray E, Li S, Qiu S, Strounina E, Sun C, Zhao H, Zhang S (2014) Blue hydrogenated lithium titanate as a high-rate anode material for lithium-ion batteries. J Mater Chem A 2:635

    Google Scholar 

  51. Kartha JP, Tunstall DP, Irvine JTS (2000) An NMR investigation of lithium occupancy of different sites in the oxide superconductor LiTi2O4 and related compounds. J Solid State Chem 152:397–402

    Article  CAS  Google Scholar 

  52. Ruprecht B, Wilkening M, Uecker R, Heitjans P (2012) Extremely slow Li ion dynamics in monoclinic Li2TiO3 probing macroscopic jump diffusion via 7Li NMR stimulated echoes. Phys Chem Chem Phys 14:11974–11980

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by V4-Japan Joint Research Program, Structure—function relationship of advanced monoxides for energy storage devices (AdOX) granted from Visegrad fund and Japan Science and Technology Agency. The partial financial support of VEGA (projects 2/0128/16, 2/0094/14 and 2/0064/14) and APVV (project 14-0103) is also acknowledged. The authors wish to thank to Dr. František Lofaj and Dr. Lenka Findoráková (Slovak Academy of Sciences, Slovakia) for Raman spectra and Dr. Angela Chemelli (TU Graz, Austria) for DLS experiments. M.W. would like to thank the Austrian Federal Ministry of Science, Research and Economy, and the National Foundation for Research, Technology and Development for the financial support. V.Š. thanks the support from DFG project (SE 1407/4-1). M.Z. acknowledges the financial support from the Grant Agency of the Czech Republic (15-06511S).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamoru Senna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senna, M., Fabián, M., Kavan, L. et al. Electrochemical properties of spinel Li4Ti5O12 nanoparticles prepared via a low-temperature solid route. J Solid State Electrochem 20, 2673–2683 (2016). https://doi.org/10.1007/s10008-016-3272-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3272-x

Keywords

Navigation