Skip to main content
Log in

Wet-chemical synthesis of spinel Li4Ti5O12 as a negative electrode

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract 

A simple two-step method for preparing nanostructured Li4Ti5O12 (LTO), a promising anode material for lithium-ion batteries (LIBs), is reported. The X-ray diffraction (XRD) results reveal that the structure of the synthesised LTO is cubic spinel type characterised by a space group Fd3m. The shape of the final powder obtained is faceted polyhedral. The average particle diameter is 68 nm. The LTO exhibits good rate capability when assembled into half cells and tested in the 1.0 to 2.5 V range. The half-cell delivers a specific capacity of 149.1, 145.5, 141.3, 139.0, 136.0, and 131.9 mAh g−1 at 0.1C, 0.2C, 0.5C, 1C, 2C, and 5C, respectively. In addition, it exhibits a reversible discharge capacity of 96.8 mAh g−1 at a 2C rate whilst maintaining a Coulombic efficiency of 99.9% after 100 cycles. The overall resistance of the LTO/Li cells at 25 °C is only 35.5 Ω, suggesting a low impedance of the LTO/Li interfaces.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. U. Energy Information Administration, U.S. energy-related carbon dioxide emissions, 2019, (2019). www.eia.gov (accessed September 2, 2021).

  2. A.G. Chmielewski, Environmental effects of fossil fuel combustion, Interact. Energy Environ. 4, 56–74 (2009)

    Google Scholar 

  3. R. Pichs Madruga, K. Seyboth, P. Eickemeier, P. Matschoss, G. Hansen, S. Kadner, S. Schlömer, T. Zwickel, C. Von Stechow, Renewable energy sources and climate change mitigation, Cambridge University Press, Cambridge, (2011). https://doi.org/10.1017/CBO9781139151153.

  4. X. Cao, S. Chen, G. Wang, Porous carbon particles derived from natural peanut shells as lithium ion battery anode and its electrochemical properties. Electron. Mater. Lett. 10, 819–826 (2014). https://doi.org/10.1007/s13391-014-4153-z

    Article  CAS  Google Scholar 

  5. B. Zhao, R. Ran, M. Liu, Z. Shao, A comprehensive review of Li4Ti5O12-based electrodes for lithium-ion batteries: the latest advancements and future perspectives. Mater. Sci. Eng. R Reports. 98, 1–71 (2015). https://doi.org/10.1016/J.MSER.2015.10.001

    Article  Google Scholar 

  6. Z. Yang, J. Zhang, M.C.W. Kintner-Meyer, X. Lu, D. Choi, J.P. Lemmon, J. Liu, Electrochemical energy storage for green grid. Chem. Rev. 111, 3577–3613 (2011). https://doi.org/10.1021/CR100290V

    Article  CAS  Google Scholar 

  7. J.-Z. Guo, Z.-Y. Gu, X.-X. Zhao, M.-Y. Wang, X. Yang, Y. Yang, W.-H. Li, X.-L. Wu, Flexible Na/K-ion full batteries from the renewable cotton cloth–derived stable, low-cost, and binder-free anode and cathode. Adv. Energy Mater. 9, 1902056 (2019). https://doi.org/10.1002/AENM.201902056

    Article  CAS  Google Scholar 

  8. X. Ma, X. Wu, Y. Liu, W. Wu, Z. Pan, P.K. Shen, Toward a high-energy-density cathode with enhanced temperature adaptability for sodium-ion batteries: a case study of Na3MnZr(PO4)3microspheres with embedded dual-carbon networks. ACS Appl. Mater. Interfaces. 13, 21390–21400 (2021). https://doi.org/10.1021/ACSAMI.1C03642

    Article  CAS  Google Scholar 

  9. S. Park, J.N. Chotard, D. Carlier, I. Moog, M. Courty, M. Duttine, F. Fauth, A. Iadecola, L. Croguennec, C. Masquelier, Crystal structures and local environments of NASICON-type Na3FeV(PO4)3and Na4FeV(PO4)3positive electrode materials for Na-Ion batteries. Chem. Mater. 33, 5355–5367 (2021). https://doi.org/10.1021/ACS.CHEMMATER.1C01457

    Article  CAS  Google Scholar 

  10. H. Gao, I.D. Seymour, S. Xin, L. Xue, G. Henkelman, J.B. Goodenough, Na3MnZr(PO4)3: a high-voltage cathode for sodium batteries. J. Am. Chem. Soc. 140, 18192–18199 (2018). https://doi.org/10.1021/JACS.8B11388

    Article  CAS  Google Scholar 

  11. P.S. Veluri, S. Mitra, High-rate capable full-cell lithium-ion battery based on a conversion anode and an intercalation cathode. ChemElectroChem 4, 686–691 (2017). https://doi.org/10.1002/CELC.201600681

    Article  CAS  Google Scholar 

  12. F. Zhang, F. Yi, T. Meng, A. Gao, D. Shu, H. Chen, H. Cheng, X. Zhou, In situ supramolecular self-assembly assisted synthesis of Li4Ti5O12–carbon-reduced graphene oxide microspheres for lithium-ion batteries. ACS Sustain. Chem. Eng. 7, 916–924 (2018). https://doi.org/10.1021/ACSSUSCHEMENG.8B04522

    Article  Google Scholar 

  13. X. Xia, Y. Zhang, D. Chao, C. Guan, Y. Zhang, L. Li, X. Ge, I.M. Bacho, J. Tu, H.J. Fan, Solution synthesis of metal oxides for electrochemical energy storage applications. Nanoscale 6, 5008–5048 (2014). https://doi.org/10.1039/C4NR00024B

    Article  CAS  Google Scholar 

  14. L. Zeng, R. Liu, L. Han, F. Luo, X. Chen, J. Wang, Q. Qian, Q. Chen, M. Wei, Preparation of a Si/SiO2–ordered-mesoporous-carbon nanocomposite as an anode for high-performance lithium-ion and sodium-ion batteries. Chem. - A Eur. J. 24, 4841–4848 (2018). https://doi.org/10.1002/CHEM.201704780

    Article  CAS  Google Scholar 

  15. J. Wang, S. Xie, L. Li, Z. Li, A.M. Asiri, H.M. Marwani, X. Han, H. Wang, Electrospinning synthesis of porous NiCoO2 nanofibers as high-performance anode for lithium-ion batteries, Part. Part. Syst. Charact. 36 (2019). https://doi.org/10.1002/PPSC.201900109.

  16. J. Zhang, Y.X. Yin, Y. You, Y. Yan, Y.G. Guo, A high-capacity tellurium@carbon anode material for lithium-ion batteries. Energy Technol. 2, 757–762 (2014). https://doi.org/10.1002/ENTE.201402069

    Article  CAS  Google Scholar 

  17. Y. Huyan, J. Wang, J. Chen, Q. Zhang, B. Zhang, Magnetic tubular carbon nanofibers as anode electrodes for high-performance lithium-ion batteries. Int. J. Energy Res. 43, 8242–8256 (2019). https://doi.org/10.1002/ER.4821

    Article  Google Scholar 

  18. A. Manthiram, A reflection on lithium-ion battery cathode chemistry, (n.d.). https://doi.org/10.1038/s41467-020-15355-0.

  19. D. Kong, W. Ren, Y. Luo, Y. Yang, C. Cheng, Scalable synthesis of graphene-wrapped Li4Ti5O12 dandelion-like microspheres for lithium-ion batteries with excellent rate capability and long-cycle life. J. Mater. Chem. A. 2, 20221–20230 (2014). https://doi.org/10.1039/C4TA04711G

    Article  CAS  Google Scholar 

  20. N. Nitta, F. Wu, J.T. Lee, G. Yushin, Li-ion battery materials: present and future. Mater. Today. 18, 252–264 (2015). https://doi.org/10.1016/J.MATTOD.2014.10.040

    Article  CAS  Google Scholar 

  21. J.-M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Nat. 2001 4146861. 414 (2001) 359–367. https://doi.org/10.1038/35104644.

  22. J. Asenbauer, T. Eisenmann, M. Kuenzel, A. Kazzazi, Z. Chen, D. Bresser, The success story of graphite as a lithium-ion anode material – fundamentals, remaining challenges, and recent developments including silicon (oxide) composites, Sustain. Energy Fuels. 4, 5387–5416 (2020). https://doi.org/10.1039/D0SE00175A

    Article  CAS  Google Scholar 

  23. J. Kim, S.M. NithyaJeghan, G. Lee, Superior fast-charging capability of graphite anode via facile surface treatment for lithium-ion batteries. Microporous Mesoporous Mater. 305, 110325 (2020). https://doi.org/10.1016/J.MICROMESO.2020.110325

    Article  CAS  Google Scholar 

  24. A. Tomaszewska, Z. Chu, X. Feng, S. O’Kane, X. Liu, J. Chen, C. Ji, E. Endler, R. Li, L. Liu, Y. Li, S. Zheng, S. Vetterlein, M. Gao, J. Du, M. Parkes, M. Ouyang, M. Marinescu, G. Offer, B. Wu, Lithium-ion battery fast charging: a review. ETransportation. 1, 100011 (2019). https://doi.org/10.1016/J.ETRAN.2019.100011

    Article  Google Scholar 

  25. J.-M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001). https://doi.org/10.1038/35104644

    Article  CAS  Google Scholar 

  26. T. Ohzuku, A. Ueda, N. Yamamoto, Zero-strain insertion material of Li [Li1 / 3Ti5 / 3 ] O 4 for rechargeable lithium cells. J. Electrochem. Soc. 142, 1431–1435 (1995). https://doi.org/10.1149/1.2048592

    Article  CAS  Google Scholar 

  27. S. Scharner, W. Weppner, P. Schmid-Beurmann, Evidence of two-phase formation upon lithium insertion into the Li1.33Ti1.67 O 4 spinel. J. Electrochem. Soc. 146, 857–861 (1999). https://doi.org/10.1149/1.1391692

    Article  CAS  Google Scholar 

  28. Y.B. He, M. Liu, Z.D. Huang, B. Zhang, Y. Yu, B. Li, F. Kang, J.K. Kim, Effect of solid electrolyte interface (SEI) film on cyclic performance of Li4Ti5O12 anodes for Li ion batteries. J. Power Sources. 239, 269–276 (2013). https://doi.org/10.1016/j.jpowsour.2013.03.141

    Article  CAS  Google Scholar 

  29. Y. Sun, L. Zhao, H. Pan, X. Lu, L. Gu, Y.-S. Hu, H. Li, M. Armand, Y. Ikuhara, L. Chen, X. Huang, Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries. Nat. Commun. 4, 1870 (2013). https://doi.org/10.1038/ncomms2878

    Article  CAS  Google Scholar 

  30. Q. Zhang, C. Zhang, B. Li, S. Kang, X. Li, Y. Wang, Preparation and electrochemical properties of Ca-doped Li 4Ti5O12 as anode materials in lithium-ion battery. Electrochim. Acta. 98, 146–152 (2013). https://doi.org/10.1016/j.electacta.2013.03.006

    Article  CAS  Google Scholar 

  31. M. Ji, Y. Xu, Z. Zhao, H. Zhang, D. Liu, C. Zhao, X. Qian, C. Zhao, Preparation and electrochemical performance of La3+ and F - co-doped Li4Ti5O12 anode material for lithium-ion batteries. J. Power Sources. 263, 296–303 (2014). https://doi.org/10.1016/j.jpowsour.2014.04.051

    Article  CAS  Google Scholar 

  32. Z. Zhao, Y. Xu, M. Ji, H. Zhang, Synthesis and electrochemical performance of F-doped Li4Ti 5O12for lithium-ion batteries. Electrochim. Acta. 109, 645–650 (2013). https://doi.org/10.1016/j.electacta.2013.07.164

    Article  CAS  Google Scholar 

  33. C.W. Chang-Jian, B.C. Ho, C.K. Chung, J.A. Chou, C.L. Chung, J.H. Huang, J.H. Huang, Y.S. Hsiao, Doping and surface modification enhance the applicability of Li4Ti5O12 microspheres as high-rate anode materials for lithium ion batteries. Ceram. Int. 44, 23063–23072 (2018). https://doi.org/10.1016/j.ceramint.2018.09.110

    Article  CAS  Google Scholar 

  34. Q. Zhang, M.G. Verde, J.K. Seo, X. Li, Y.S. Meng, Structural and electrochemical properties of Gd-doped Li4Ti5O12 as anode material with improved rate capability for lithium-ion batteries. J. Power Sources. 280, 355–362 (2015). https://doi.org/10.1016/j.jpowsour.2015.01.124

    Article  CAS  Google Scholar 

  35. Z. Pu, Q. Lan, Y. Li, S. Liu, D. Yu, X.J. Lv, Preparation of W-doped hierarchical porous Li4Ti5O12/brookite nanocomposites for high rate lithium ion batteries at − 20 °C. J. Power Sources. 437, 226890 (2019). https://doi.org/10.1016/j.jpowsour.2019.226890

    Article  CAS  Google Scholar 

  36. W. Wang, H. Wang, S. Wang, Y. Hu, Q. Tian, S. Jiao, Ru-doped Li4Ti5O12 anode materials for high rate lithium-ion batteries. J. Power Sources. 228, 244–249 (2013). https://doi.org/10.1016/j.jpowsour.2012.11.092

    Article  CAS  Google Scholar 

  37. Z. Liu, L. Sun, W. Yang, J. Yang, S. Han, D. Chen, Y. Liu, X. Liu, The synergic effects of Na and K co-doping on the crystal structure and electrochemical properties of Li4Ti5O12 as anode material for lithium ion battery. Solid State Sci. 44, 39–44 (2015). https://doi.org/10.1016/j.solidstatesciences.2015.04.002

    Article  CAS  Google Scholar 

  38. W. Li, M. Chen, J. Jiang, R. Wu, F. Wang, W. Liu, G. Peng, M. Qu, Structural and electrochemical characteristics of SiO2 modified Li4Ti5O12 as anode for lithium-ion batteries. J. Alloys Compd. 637, 476–482 (2015). https://doi.org/10.1016/j.jallcom.2015.03.049

    Article  CAS  Google Scholar 

  39. J. Kim, K.E. Lee, K.H. Kim, S. Wi, S. Lee, S. Nam, C. Kim, S.O. Kim, B. Park, Single-layer graphene-wrapped Li4Ti5O12 anode with superior lithium storage capability. Carbon N. Y. 114, 275–283 (2017). https://doi.org/10.1016/j.carbon.2016.12.022

    Article  CAS  Google Scholar 

  40. W.K. Pang, V.K. Peterson, N. Sharma, J.-J. Shiu, S. Wu, Lithium migration in Li4Ti5O12 studied using in situ neutron powder diffraction. Chem. Mater. 26, 2318–2326 (2014). https://doi.org/10.1021/cm5002779

    Article  CAS  Google Scholar 

  41. L. Wang, Y. Zhang, M.E. Scofield, S. Yue, C. McBean, A.C. Marschilok, K.J. Takeuchi, E.S. Takeuchi, S.S. Wong, Enhanced performance of “flower-like” Li4Ti5O12 motifs as anode materials for high-rate lithium-ion batteries. Chemsuschem 8, 3304–3313 (2015). https://doi.org/10.1002/cssc.201500639

    Article  CAS  Google Scholar 

  42. B. VikramBabu, K. VijayaBabu, G. TewodrosAregai, L. Seeta Devi, B. MadhaviLatha, M. SushmaReddi, K. Samatha, V. Veeraiah, Structural and electrical properties of Li4Ti5O12 anode material for lithium-ion batteries. Results Phys. 9, 284–289 (2018). https://doi.org/10.1016/j.rinp.2018.02.050

    Article  Google Scholar 

  43. M. Zukalová, M. Fabián, M. Klusáčková, M. Klementová, B. PitňaLásková, Z. Danková, M. Senna, L. Kavan, Li insertion into Li4Ti5O12 spinel prepared by low temperature solid state route: charge capability vs surface area. Electrochim. Acta. 265, 480–487 (2018). https://doi.org/10.1016/j.electacta.2018.01.171

    Article  CAS  Google Scholar 

  44. C.P. Sandhya, B. John, C. Gouri, Lithium titanate as anode material for lithium-ion cells: a review, Ionics 2014 205. 20 (2014) 601–620. https://doi.org/10.1007/S11581-014-1113-4.

  45. Y.-J. Hao, Q.-Y. Lai, J.-Z. Lu, H.-L. Wang, Y.-D. Chen, X.-Y. Ji, Synthesis and characterisation of spinel Li4Ti5O12 anode material by oxalic acid-assisted sol–gel method. J. Power Sources. 2, 1358–1364 (2006). https://doi.org/10.1016/J.JPOWSOUR.2005.09.063

    Article  Google Scholar 

  46. Y. Hao, Q. Lai, Z. Xu, X. Liu, X. Ji, Synthesis by TEA sol-gel method and electrochemical properties of Li 4Ti5O12 anode material for lithium-ion battery. Solid State Ionics 176, 1201–1206 (2005). https://doi.org/10.1016/J.SSI.2005.02.010

    Article  CAS  Google Scholar 

  47. H.-Y. Wu, M.-H. Hon, C.-Y. Kuan, I.-C. Leu, Hydrothermal synthesis of Li4Ti5O12 nanosheets as anode materials for lithium ion batteries. RSC Adv. 5, 35224–35229 (2015). https://doi.org/10.1039/C5RA01351H

    Article  CAS  Google Scholar 

  48. S.-H. Yu, A. Pucci, T. Herntrich, M.-G. Willinger, S.-H. Baek, Y.-E. Sung, N. Pinna, Surfactant-free nonaqueous synthesis of lithium titanium oxide (LTO) nanostructures for lithium ion battery applications. J. Mater. Chem. 21, 806–810 (2011). https://doi.org/10.1039/C0JM03064C

    Article  CAS  Google Scholar 

  49. R. Wang, X. Cao, D. Zhao, L. Zhu, L. Xie, J. Liu, Y. Liu, Wet-chemistry synthesis of Li 4 Ti 5 O 12 as anode materials rendering high-rate Li-ion storage. Int. J. Energy Res. 44, 4211–4223 (2020). https://doi.org/10.1002/er.5020

    Article  CAS  Google Scholar 

  50. S. Scharner, W. Weppner, P. Schmid‐Beurmann, Evidence of two‐phase formation upon lithium insertion into the Li1.33Ti1.67 O 4 spinel, J. Electrochem. Soc. 146 (1999) 857–861. https://doi.org/10.1149/1.1391692/XML.

  51. C. Schöttle, D.E. Doronkin, R. Popescu, D. Gerthsen, J.-D. Grunwaldt, C. Feldmann, Ti 0 nanoparticles via lithium-naphthalenide-driven reduction. Chem. Commun. 52, 6316–6319 (2016). https://doi.org/10.1039/C6CC01957A

    Article  CAS  Google Scholar 

  52. C. Huang, S.X. Zhao, H. Peng, Y.H. Lin, C.W. Nan, G.Z. Cao, Hierarchical porous Li4Ti5O12-TiO2 composite anode materials with pseudocapacitive effect for high-rate and low-temperature applications. J. Mater. Chem. A. 6, 14339–14351 (2018). https://doi.org/10.1039/c8ta03172j

    Article  CAS  Google Scholar 

  53. L. Noerochim, W. Caesarendra, A. Habib, Suwarno Widyastuti, Y.L. Ni’mah, A. Subhan, B. Prihandoko, B. Kosasih, Role of TiO2 phase composition tuned by LiOH on the electrochemical performance of dual-phase Li4Ti5O12-TiO2 microrod as an anode for lithium-ion battery. Energies. 13, 5251 (2020). https://doi.org/10.3390/en13205251

    Article  CAS  Google Scholar 

  54. Y. Wang, H. Liu, K. Wang, H. Eiji, Y. Wang, H. Zhou, Synthesis and electrochemical performance of nano-sized Li4Ti5O12 with double surface modification of Ti(III) and carbon. J. Mater. Chem. 19, 6789 (2009). https://doi.org/10.1039/b908025b

    Article  CAS  Google Scholar 

  55. W. Chen, H. Jiang, Y. Hu, Y. Dai, C. Li, Mesoporous single crystals Li 4 Ti 5 O 12 grown on rGO as high-rate anode materials for lithium-ion batteries. Chem. Commun. 50, 8856–8859 (2014). https://doi.org/10.1039/C4CC02886D

    Article  CAS  Google Scholar 

  56. Z. Zhang, G. Li, H. Peng, K. Chen, Hierarchical hollow microspheres assembled from N-doped carbon coated Li4Ti5O12 nanosheets with enhanced lithium storage properties. J. Mater. Chem. A. 1, 15429 (2013). https://doi.org/10.1039/c3ta13860g

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Royal Society Te Apārangi through the Marsden Fund (Grant number UOA1816). Martin Ryan of Callaghan Innovation, New Zealand, is acknowledged for his assistance in the structural characterisation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Cao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jena, K.D., Song, X., Lim, K. et al. Wet-chemical synthesis of spinel Li4Ti5O12 as a negative electrode. emergent mater. 6, 1151–1158 (2023). https://doi.org/10.1007/s42247-022-00424-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-022-00424-5

Keywords

Navigation