Skip to main content
Log in

PEO-coated sulfur-carbon composite for high-performance lithium-sulfur batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Poly(ethylene oxide)-coated sulfur/carbon (S/C/PEO) composite with a high sulfur loading is prepared to improve the performance of lithium-sulfur batteries. By magnetic string, 3.7 wt% PEO is coated onto the surface of ball-milling obtained S/C composite, leading to synthesis of S/C/PEO composite containing 78 wt% S. It is confirmed from a series of measurements that PEO covers the S/C composite uniformly, and PEO coating is quite effective in stabilizing the electrochemical performance. When employed as cathode for lithium-sulfur batteries, S/C/PEO delivers an initial discharge capacity of 989.6 mAh g−1 and remains 648.3 mAh g−1 after 110 cycles at a discharge/charge rate of 1 C (based on sulfur weight). Meanwhile, the coulomb efficiency of S/C/PEO composite reaches to ~98 % during the latter 105 cycles. The improved electrochemical performance can be attributed to the formation of PEO coating layer which can keep a tight contact between carbon and sulfur and lead to improved conductivity. Moreover, the PEO coating can act as a flexible cushion to accommodate volume changes of sulfur cathode as well as a barrier to trap soluble polysulfide intermediates during the charge-discharge processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM (2012) Li-O2 and Li-S batteries with high energy storage. Nat Mater 11:19–29

    Article  CAS  Google Scholar 

  2. Yang Y, Zheng G, Cui Y (2013) Nanostructured sulfur cathodes. Chem Soc Rev 42:3018–3032

    Article  CAS  Google Scholar 

  3. Zhang Y, Zhao Y, Sun KE, Chen P (2011) Development in lithium sulfur secondary batteries. Open Mater Sci J 5:215–221

    Article  Google Scholar 

  4. Li K, Wang B, Su D, Park J, Ahn H, Wang G (2012) Enhance electrochemical performance of lithium sulfur battery through a solution-based processing technique. J Power Sources 202:389–393

    Article  CAS  Google Scholar 

  5. Li Q, Zhang Z, Zhang K, Xu L, Fang J, Lai Y, Li J (2013) Synthesis and electrochemical performance of TiO2–sulfur composite cathode materials for lithium–sulfur batteries. J Solid State Electrochem 17:2959–2965

    Article  CAS  Google Scholar 

  6. Wang C, Wan W, Chen JT, Zhou HH, Zhang XX, Yuan LX, Huang YH (2013) Dual core–shell structured sulfur cathode composite synthesized by a one-pot route for lithium sulfur batteries. J Mater Chem A 1:1716–1723

    Article  CAS  Google Scholar 

  7. He M, Yuan LX, Zhang WX, Hu XL, Huang YH (2011) Enhanced cyclability for sulfur cathode achieved by a water-soluble binder. J Phys Chem C 115:15703–15709

    Article  CAS  Google Scholar 

  8. Zhang SS, Read JA (2012) A new direction for the performance improvement of rechargeable lithium/sulfur batteries. J Power Sources 200:77–82

    Article  CAS  Google Scholar 

  9. Zheng G, Zhang Q, Cha JJ, Yang Y, Li W, Seh ZW, Cui Y (2013) Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries. Nano Lett 13:1265–1270

    Article  CAS  Google Scholar 

  10. Jiang S, Zhang Z, Qu Y, Wang X, Li Q, Lai Y, Li J (2013) Activated carbon aerogels with high bimodal porosity for lithium/sulfur batteries. J Solid State Electrochem 18:545–551

    Article  Google Scholar 

  11. Li X, Cao Y, Qi W, Saraf LV, Xiao J, Nie Z, Mietek J, Zhang JG, Schwenzer B, Liu J (2011) Optimization of mesoporous carbon structures for lithium–sulfur battery applications. J Mater Chem 21:16603–16610

    Article  CAS  Google Scholar 

  12. Jayaprakash N, Shen J, Moganty SS, Corona A, Archer LA (2011) Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. Angew Chem 123:6026–6030

    Article  Google Scholar 

  13. Xu T, Song J, Cordin ML, Sohn H, Yu Z, Chen S, Wang D (2013) Mesoporous carbon − carbon nanotube − sulfur composite microspheres for high-areal-capacity lithium − sulfur battery cathodes. ACS Appl Mater Interfaces 5:11355–11362

    Article  CAS  Google Scholar 

  14. Song L, Xu T, Cordin ML, Zhu P, Lv D, Jiang YB, Chen Y, Duan Y, Wang D (2014) Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium-sulfur batteries. Adv Funct Mater 24:1243–1250

    Article  CAS  Google Scholar 

  15. Li L, Li LY, Guo XD, Zhong BH, Chen YX, Tang Y (2013) Synthesis and electrochemical performance of sulfur–carbon composite cathode for lithium–sulfur batteries. J Solid State Electrochem 17:115–119

    Article  CAS  Google Scholar 

  16. Zhang B, Qin X, Li GR, Gao XP (2010) Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy Environ Sci 3:1531–1537

    Article  CAS  Google Scholar 

  17. Geng X, Rao M, Li X, Li W (2013) Highly dispersed sulfur in multi-walled carbon nanotubes for lithium/sulfur battery. J Solid State Electrochem 17:987–992

    Article  CAS  Google Scholar 

  18. Fu Y, Manthiram A (2012) Orthorhombic bipyramidal sulfur coated with polypyrrole nanolayers as a cathode material for lithium–sulfur batteries. J Phys Chem C 116:8910–8915

    Article  CAS  Google Scholar 

  19. Xiao L, Cao Y, Xiao J, Schwenzer B, Engelhard MH, Saraf LV, Nie Z, Exarhos GJ, Liu J (2012) A soft approach to encapsulate sulfur: polyaniline nanotubes for lithium-sulfur batteries with long cycle life. Adv Mater 24:1176–1181

    Article  CAS  Google Scholar 

  20. He XM, Wang L, Pu WH, Ren JG, Wu W, Jiang CY, Wan CR (2008) Thermal analysis of sulfurization of polyacrylonitrile with elemental sulfur. J Therm Anal Calorim 94:151–155

    Article  CAS  Google Scholar 

  21. Ji X, Lee KT, Nazar LF (2009) Ahighly ordered nanostructured carbon–sulphur cathode for lithium-sulfur batteries. Nat Mater 8:500–506

    Article  CAS  Google Scholar 

  22. Yang Y, Yu G, Cha JJ, Wu H, Vosgueritchian M, Yao Y, Bao Z, Cui Y (2011) Improving the performance of lithium-sulfur batteries by conductive polymer coating. ACS Nano 20:9187–9193

    Article  Google Scholar 

  23. Song S, Wang YY, Wan CC (1999) Review of gel-type polymer electrolytes for lithium-ion batteries. J Power Sources 77:183–197

    Article  CAS  Google Scholar 

  24. Qian X, Gu N, Cheng Z, Yang X, Wang E, Dong S (2002) Plasticizer effect on the ionic conductivity of PEO-based polymer electrolyte. Mater Chem Phys 74:98–103

    Article  CAS  Google Scholar 

  25. Huang JQ, Zhang Q, Zhang SM, Liu XF, Zhu W, Qian WZ, Wei F (2013) Aligned sulfur-coated carbon nanotubes with a polyethylene glycol barrier at one end for use as a high efficiency sulfur cathode. Carbon 58:99–106

    Article  CAS  Google Scholar 

  26. Zhang SS, Tran DT (2012) A proof-of-concept lithium/sulfur liquid battery with exceptionally high capacity density. J Power Sources 211:169–172

    Article  CAS  Google Scholar 

  27. Fu Y, Su YS, Manthiram A (2012) Sulfur-carbon nanocomposite cathodes improved by an amphiphilic block copolymer for high-rate lithium-sulfur batteries. ACS Appl Mater Interfaces 4:6046–6052

    Article  CAS  Google Scholar 

  28. Cao Y, Li X, Aksay IA, Lemmon J, Nie Z, Yang Z, Liu J (2011) Sandwich-type functionalized graphene sheet-sulfur nanocomposite for rechargeable lithium batteries. Phys Chem Chem Phys 13:7660–7665

    Article  CAS  Google Scholar 

  29. Yuan L, Yuan H, Qiu X, Chen L, Zhu W (2009) Improvement of cycle property of sulfur-coated multi-walled carbon nanotubes composite cathode for lithium/sulfur batteries. J Power Sources 189:1141–1146

    Article  CAS  Google Scholar 

  30. Fu Y, Manthiram A (2012) Enhanced cyclability of lithium–sulfur batteries by a polymer acid-doped polypyrrole mixed ionic–electronic conductor. Chem Mater 24:3081–3087

    Article  CAS  Google Scholar 

  31. Deng Z, Zhang Z, Lai Y, Liu J, Liu Y, Li J (2013) A sulfur–carbon composite for lithium/sulfur battery based on activated vapor-grown carbon fiber. Solid State Ionics 238:44–49

    Article  CAS  Google Scholar 

  32. Wang H, Yang Y, Liang Y, Robinson JT, Li Y, Jackson A, Cui Y, Dai H (2011) Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Lett 11:2644–2647

    Article  CAS  Google Scholar 

  33. He X, Ren J, Wang L, Pu W, Jiang C, Wan C (2009) Expansion and shrinkage of the sulfur composite electrode in rechargeable lithium batteries. J Power Sources 190:154–156

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (2009CB220105), the international cooperation program with Germany (2012DFG61480), and the National High Technology Research and Development Program of China (2013AA050901).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongqiang Shan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Liu, X., Zhu, K. et al. PEO-coated sulfur-carbon composite for high-performance lithium-sulfur batteries. J Solid State Electrochem 19, 3373–3379 (2015). https://doi.org/10.1007/s10008-015-2961-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2961-1

Keywords

Navigation