Skip to main content
Log in

Thermal analysis of sulfurization of polyacrylonitrile with elemental sulfur

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal analysis of sulfurization of polyacrylonitrile (PAN) with elemental sulfur was investigated by thermogravimetry and differential thermal analysis of the mixture of polyacrylonitrile and elemental sulfur up to 600°C. Due to the volatilization of sulfur, the different heating rate (10 and 20 K min−1) and different mixture proportion of polyacrylonitrile and elemental sulfur were adopted to run the analysis. The different heating rates make the DSC curves of sulfur different, but make the DSC curves of PAN similar. In the DSC curve of sulfur for the heating rate of 20 K min−1 around 400°C, a small exothermic peak occurs at 400°C in the wide endothermic peak around 380∼420°C, indicative of that there is an exothermic reaction around 400°C. In the DSC curves of the mixture, the peaks around 320°C are exothermic as the content of sulfur is below 3.5:1 and endothermic as the content of sulfur is over 4:1, indicating that one of the reactions between PAN and sulfur takes place around 320°C. In the TG curves of the mixture, the mass losses begin at 220°C, and sharply drop down from 280°C. The curves for the low sulfur content obviously show two steps of mass loss, and curves for the high sulfur content show only one step of mass loss, indicative of more sulfur is benefit for the complete sulfurization of PAN. This study demonstrates that the TG/DSC analysis can give the parameter for the sulfurization, even if the starting mixture contains the volatile sulfur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. L. Wang, J. Yang, C. R. Wan, K. Du, J. Y. Xie and N. X. Xu, Adv. Functional Mater., 13 (2003) 487.

    Article  CAS  Google Scholar 

  2. J. L. Wang, J. Yang, J. Y. Xie and N. X. Xu, Adv. Mater., 14 (2002) 963.

    CAS  Google Scholar 

  3. J. L. Wang, J. Yang, J. Y. Xie, N. X. Xu and Y. Li, Electrochem. Commun., 4 (2002) 499.

    Article  CAS  Google Scholar 

  4. J. Yang, B. F. Wang, K. Wang, Y. Liu, J. Y. Xie and Z. S. Wen, Electrochem. Solid State Lett., 6 (2003) A154.

    Article  CAS  Google Scholar 

  5. J. L. Wang, L. Liu, Z. J. Ling, J. Yang, C. R. Wan and C. Y. Jiang, Electrochim. Acta, 48 (2003) 1861.

    Article  CAS  Google Scholar 

  6. X. G. Yu, J. Y. Xie, J. Yang, H. J. Huang, K. Wang and Z. S. Wen, J. Electroanal. Chem., 573 (2004) 121.

    Article  CAS  Google Scholar 

  7. X. G. Yu, J. Y. Xie, J. Yang and K. Wang, J. Power Sources, 132 (2004) 181.

    Article  CAS  Google Scholar 

  8. X. U. Yu, J. Y. Xie, Y. Li, H. J. Huang, C. Y. Lai and K. Wang, J. Power Sources, 146 (2005) 335.

    Article  CAS  Google Scholar 

  9. J. L. Wang, Y. W. Wang, X. M. He, J. G. Ren, C. Y. Jiang and C. R. Wan, J. Power Sources, 138 (2004) 271.

    Article  CAS  Google Scholar 

  10. X. M. He, W. H. Pu, J. G. Ren, L. Wang, J. L. Wang, C. Y. Jiang and C. R. Wan, Electrochim. Acta, 52 (2007) 7372.

    Article  CAS  Google Scholar 

  11. Y. N. Nuli, Z. P. Guo, H. K. Liu and J. Yang, Electrochem. Commun., 9 (2007) 1913.

    Article  CAS  Google Scholar 

  12. W. H. Pu, X. M. He, L. Wang, Z. Tian, C. Y. Jiang and C. R. Wan, Ionics, 13 (2007) 273.

    Article  CAS  Google Scholar 

  13. X. M. He, W. H. Pu, J. G. Ren, L. Wang, J. L. Wang, C. Y. Jiang and C. R. Wan, Ionics, 2007, DOI:10.1007/s11581-007-0159-y.

  14. J. L. Wang, J. Yang, Y. N. Nuli and R. Holze, Electrochem. Commun., 9 (2007) 31.

    Article  CAS  Google Scholar 

  15. T. H. Ko, J. Appl. Polym. Sci., 43 (1991) 589.

    Article  CAS  Google Scholar 

  16. Y. Jung, M.C. Suh, H. Lee, M. Kim and S.-L. Lee, J. Electrochem. Soc., 144 (1997) 4279.

    Article  CAS  Google Scholar 

  17. T. H. Ko, C. H. Lin and H. Y. Ting, J. Appl. Polym. Sci., 37 (1989) 553.

    Article  CAS  Google Scholar 

  18. K. Neumann, Z. Phys. Chem., A171 (1934) 416.

    CAS  Google Scholar 

  19. W. A. West and A. W. C. Menzies, J. Phys. Chem., 33 (1929) 1880.

    Article  CAS  Google Scholar 

  20. R. F. Bacon and R. Fanelli, J. Am. Chem. Soc., 65 (1943) 639.

    Article  CAS  Google Scholar 

  21. R. Fanelli, J. Am. Chem. Soc., 67 (1945) 1832.

    Article  CAS  Google Scholar 

  22. G. A. Dalin and J. R. West, J. Phys. Colloid Chem., 54 (1937) 1215.

    Google Scholar 

  23. E. Licht Jr. and D. G. Stechert, J. Phys. Chem., 48 (1944) 23.

    Article  CAS  Google Scholar 

  24. C. K. Radhakrishnan, A. Sujith and G. Unnikrishnan, J. Therm. Anal. Cal., 90 (2007) 191.

    Article  CAS  Google Scholar 

  25. S. Arvelakis, F. J. Frandsen and E. G. Koukios, J. Therm. Anal. Cal., 88 (2007) 769.

    Article  CAS  Google Scholar 

  26. B. Zdravkov and Y. Pelovski, J. Therm. Anal. Cal., 88 (2007) 99.

    Article  CAS  Google Scholar 

  27. S. P. Chen, X. X. Meng, Q. Shuai, B. J. Jiao, S. L. Gao and Q. Z. Shi, J. Therm. Anal. Cal., 86 (2006) 767.

    Article  CAS  Google Scholar 

  28. G. Q. Zhong, S. R. Luan, P. Wang, Y. C. Guo, Y. R. Chen and Y. Q. Jia, J. Therm. Anal. Cal., 86 (2006) 775.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. -M. He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, X.M., Wang, L., Pu, W.H. et al. Thermal analysis of sulfurization of polyacrylonitrile with elemental sulfur. J Therm Anal Calorim 94, 151–155 (2008). https://doi.org/10.1007/s10973-008-9008-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-008-9008-0

Keywords

Navigation