Skip to main content
Log in

Advanced electrochemical performance of hybrid nanocomposites based on LiFePO4 and lithium salt doped polyaniline

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

LiFePO4 (LFP) is one of the commercially usable cathode materials for lithium batteries. To overcome its main drawback—low conductivity—LFP particles are usually covered by carbon shell. But this approach lowers the capacity of the whole cathode due to electrochemical inactivity of the carbon shell at the required potentials. In the present work, we propose a novel approach which is based on mechanochemical insertion of LFP particles inside polyaniline doped with lithium salt. It is established that during charge–discharge of these nanocomposites, both LFP and polyaniline are redox active. It is shown that the prepared nanocomposites exhibit improved electrochemical performance as a cathode in lithium batteries compared with the individual LFP. It is shown that the presence of the polyaniline in the nanocomposite could facilitate the transport of lithium ions inside (outside) the inorganic component during discharge (charge).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Goodenough JB (2013) Evolution of strategies for modern rechargeable batteries. Acc Chem Res 46:1053–1061

    Article  CAS  Google Scholar 

  2. Kim T-H, Park J-S, Chang SK, Choi S, Ryu JH, Song H-K (2012) The current move of lithium Ion batteries towards the next phase. Adv Energy Mater 2:860–872

    Article  CAS  Google Scholar 

  3. Zhang Y, Huo Q-Y, Du P-P, Wang L-Z, Zhang A-Q, Song Y-H, Lv Y, Li G-Y (2012) Advances in new cathode material LiFePO4 for lithium-ion batteries. Synth Met 162:1315–1326

    Article  CAS  Google Scholar 

  4. Devaraju MK, Honma I (2012) Hydrothermal and solvothermal process towards development of LiMPO4 (M = Fe, Mn) nanomaterials for lithium-Ion batteries. Adv Energy Mater 2:284–297

    Article  CAS  Google Scholar 

  5. Park M, Zhang X, Chung M, Lessa GB, Sastrya AM (2010) A review of conduction phenomena in Li-ion batteries. J Power Sources 195:7904–7929

    Article  CAS  Google Scholar 

  6. Wang J, Sun X (2012) Understanding and recent development of carbon coating on LiFePO4 cathode materials for lithium-ion batteries. Energy Environ Sci 5:5163–5185

    Article  CAS  Google Scholar 

  7. Mukherjee R, Krishnan R, Lu T-M, Koratkar N (2012) Nanostructured electrodes for high-power lithium ion batteries. Nano Energy 1:518–533

    Article  CAS  Google Scholar 

  8. Lim J-S, Kim D-H, Mathew V, Ahn D-C, Kim J-K (2011) Synthesis of LiFePO4 nanoparticles by solvothermal process using various polyol media and their electrochemical properties. J Nanosci Nanotechnol 11:1451–1454

    Article  CAS  Google Scholar 

  9. Ren Y, Bruce PG (2012) Mesoporous LiFePO4 as a cathode material for rechargeable lithium ion batteries. Electrochem Commun 17:60–62

    Article  CAS  Google Scholar 

  10. Vu A, Qian Y, Stein A (2012) Porous electrode materials for lithium-Ion batteries—how to prepare them and what makes them special. Adv Energy Mater 2:1056–1085

    Article  CAS  Google Scholar 

  11. Lu Z, Cheng H, Lo M, Chung CY (2007) Pulsed laser deposition and electrochemical characterization of LiFePO4–Ag composite thin films. Adv Funct Mater 117:3885–3896

  12. Omenya F, Chernova NA, Zhang R, Fang J, Huang Y, Cohen F, Dobrzynski N, Senanayake S, Xu W, Whittingham MS (2013) Why substitution enhances the reactivity of LiFePO4. Chem Mater 25:85–89

    Article  CAS  Google Scholar 

  13. Li H, Zhou H (2012) Enhancing the performances of Li-ion batteries by carbon-coating: present and future. Chem Commun 48:1201–1217

    Article  CAS  Google Scholar 

  14. Ni H, Liu J, Fan L-Z (2013) Carbon-coated LiFePO4–porous carbon composites as cathode materials for lithium ion batteries. Nanoscale 5:2164–2168

  15. Xu C, Xu B, Gu Y, Xiong Z, Sun J, Zhao XS (2013) Graphene-based electrodes for electrochemical energy storage. Energy Environ Sci 6:1388–1414

    Article  CAS  Google Scholar 

  16. Hu L-H, Wu F-Y, Lin C-T, Khlobystov AN, Li L-J (2013) Graphene-modified LiFePO4 cathode for lithium ion battery beyond theoretical capacity. Nat Commun 4:1687

    Article  Google Scholar 

  17. Yang J, Wang J, Tang Y, Wang D, Li X, Hu Y, Li R, Liang G, Sham T-K, Sun X (2013) LiFePO4–graphene as a superior cathode material for rechargeable lithium batteries: impact of stacked graphene and unfolded graphene. Energy Environ Sci 6:1521–1528

    Article  CAS  Google Scholar 

  18. Chen W-M, Qie L, Yuan L-X, Xia S-A, Hu X-L, Zhang W-X, Huang Y-H (2011) Insight into the improvement of rate capability and cyclability in LiFePO4/polyaniline composite cathode. Electrochim Acta 56:2689–2695

    Article  CAS  Google Scholar 

  19. Lepage D, Michot C, Liang G, Gauthier M, Schougaard SB (2011) A soft chemistry approach to coating of LiFePO4 with a conducting polymer. Angew Chem Int Ed 50:6884–6887

    Article  CAS  Google Scholar 

  20. Boyano I, Blazquez JA, de Meatza I, Bengoechea M, Miguel O, Grande H, Huang Y, Goodenough JB (2010) Preparation of C-LiFePO4/polypyrrole lithium rechargeable cathode by consecutive potential steps electrodeposition. J Power Sources 195:5351–5359

    Article  CAS  Google Scholar 

  21. Huang Y-H, Goodenough JB (2008) High-rate LiFePO4 lithium rechargeable battery promoted by electrochemically active polymers. Chem Mater 20:7237–7241

    Article  CAS  Google Scholar 

  22. Huang Y-H, Park K-S, Goodenough JB (2006) Improving lithium batteries by tethering carbon-coated LiFePO4 to polypyrrole. J Electrochem Soc 153:A2282–A2286

    Article  CAS  Google Scholar 

  23. Wang J-Z, Chou S-L, Chen J, Chew S-Y, Wang G-X, Konstantinov K, Wu J, Dou S-X, Liu HK (2008) Paper-like free-standing polypyrrole and polypyrrole–LiFePO4 composite films for flexible and bendable rechargeable battery. Electrochem Commun 10:1781–1784

    Article  CAS  Google Scholar 

  24. Murugan AV, Muraliganth T, Manthiram A (2008) Rapid microwave-solvothermal synthesis of phospho-olivine nanorods and their coating with a mixed conducting polymer for lithium ion batteries. Electrochem Commun 10:903–906

    Article  Google Scholar 

  25. Su L, Jing Y, Zhou Z (2011) Li ion battery materials with core–shell nanostructures. Nanoscale 3:3967–3983

    Article  CAS  Google Scholar 

  26. Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196:1–12

    Article  CAS  Google Scholar 

  27. Katz HE, Searson PC, Poehler TO (2010) Batteries and charge storage devices based on electronically conducting polymers. J Mater Res 25:1561–1574

    Article  CAS  Google Scholar 

  28. Stejskal J, Gilbert RG (2002) Preparation of a conducting polymer (IUPAC technical report). Polyaniline. Pure Appl Chem 74:857–867

    Article  CAS  Google Scholar 

  29. Novák P, Müller K, Santhanam KSV, Haas O (1997) Electrochemically active polymers for rechargeable batteries. Chem Rev 97:207–282

    Article  Google Scholar 

  30. Ryu KS, Kim KM (2007) A hybrid power source with a shared electrode of polyaniline doped with LiPF6. J Power Sources 165:420–426

    Article  CAS  Google Scholar 

  31. Posudievsky OY, Kozarenko OA, Dyadyun VS, Koshechko VG, Pokhodenko VD (2012) Electrochemical performance of mechanochemically prepared polyaniline doped with lithium salt. Synth Met 162:2206–2211

    Article  CAS  Google Scholar 

  32. Posudievsky OY, Goncharuk OA, Pokhodenko VD (2010) Mechanochemical preparation of conducting polymers and oligomers. Synth Met 160:47–51

    Article  CAS  Google Scholar 

  33. Posudievsky OY, Goncharuk OA, Barille R, Pokhodenko VD (2010) Structure–property relationship in mechanochemically prepared polyaniline. Synth Met 160:462–467

    Article  CAS  Google Scholar 

  34. Posudievsky OY, Kozarenko OA (2011) Effect of monomer/oxidant mole ratio on polymerization mechanism, conductivity and spectral characteristics of mechanochemically prepared polypyrrole. Polym Chem 2:216–220

    Article  CAS  Google Scholar 

  35. Posudievsky OY, Kozarenko OA, Dyadyun VS, Jorgensen SW, Spearot JA, Koshechko VG, Pokhodenko VD (2011) Characteristics of mechanochemically prepared host–guest hybrid nanocomposites of vanadium oxide and conducting polymers. J Power Sources 196:3331–3341

    Article  CAS  Google Scholar 

  36. Posudievsky OY, Kozarenko OA, Dyadyun VS, Jorgensen SW, Spearot JA, Koshechko VG, Pokhodenko VD (2011) Effect of host–guest versus core–shell structure on electrochemical characteristics of vanadium oxide/polypyrrole nanocomposites. Electrochim Acta 58:442–448

    Article  CAS  Google Scholar 

  37. Kanga ET, Neoha KG, Tan KL (1998) Polyaniline: a polymer with many interesting intrinsic redox states. Prog Polym Sci 23:277–324

    Article  Google Scholar 

  38. Zhao B, Yu X, Cai R, Ran R, Wang H, Shao Z (2012) Solution combustion synthesis of high-rate performance carbon-coated lithium iron phosphate from inexpensive iron (III) raw material. J Mater Chem 22:2900–2907

    Article  CAS  Google Scholar 

  39. Su F-Y, You C, He Y-B, Lv W, Cui W, Jin F, Li B, Yang Q-H, Kang F (2010) Flexible and planar graphene conductive additives for lithium-ion batteries. J Mater Chem 20:9644–9650

    Article  CAS  Google Scholar 

  40. Kang B, Ceder G (2009) Battery materials for ultrafast charging and discharging. Nature 458:190–193

    Article  CAS  Google Scholar 

  41. Wu B, Ren Y, Mu D, Zhang C, Liu X, Wu F (2013) Enhanced low temperature performance of LiFePO4 cathode with electrolyte modification. Int J Electrochem Sci 8:8502–8512

  42. Shin HC, Cho WI, Jang H (2006) Electrochemical properties of the carbon-coated LiFePO4 as a cathode material for lithium-ion secondary batteries. J Power Sources 159:1383–1388

Download references

Acknowledgments

The work was supported by the State Target Program of Ukraine “Nanotechnologies and Nanomaterials” (grant 6.22.3.11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg Yu. Posudievsky.

Additional information

Oleg Posudievsky holds a PhD degree, L.V. Pisarzhevsky Institute of Physical Chemistry of the National Academy of Sciences Ukraine.

Olga A. Kozarenko holds a PhD degree, L.V. Pisarzhevsky Institute of Physical Chemistry of the National Academy of Sciences Ukraine.

Vyacheslav G. Koshechko is a professor, L.V. Pisarzhevsky Institute of Physical Chemistry of the National Academy of Sciences Ukraine.

Vitaly D. Pokhodenko is a professor, L.V. Pisarzhevsky Institute of Physical Chemistry of the National Academy of Sciences Ukraine.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 179 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Posudievsky, O.Y., Kozarenko, O.A., Dyadyun, V.S. et al. Advanced electrochemical performance of hybrid nanocomposites based on LiFePO4 and lithium salt doped polyaniline. J Solid State Electrochem 19, 2733–2740 (2015). https://doi.org/10.1007/s10008-015-2818-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2818-7

Keywords

Navigation