Skip to main content
Log in

Facile synthesis of lithium-rich layered oxide Li[Li0.2Ni0.2Mn0.6]O2 as cathode of lithium-ion batteries with improved cyclic performance

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Lithium-rich layered oxide has attracted much attention as a cathode of lithium-ion batteries due to its high specific capacity and relative cheapness. Although much effort has been dedicated to its development, this oxide is not used commercially because of its poor cyclic performance. In this work, we reported a facile synthesis for lithium-rich layered oxide, Li[Li0.2Ni0.2Mn0.6]O2, with improved cyclic performance, in which fast evaporation for precursor formation is introduced. The as-synthesized samples were characterized with X-ray diffraction, Raman spectroscopy and scanning electron microscope, and charge/discharge test. The results indicate that the as-synthesized samples deliver a reversible capacity of ~200 mAh g−1 and remain unchanged after 50 cycles at 0.05 C. The improved cyclic performance can be attributed to the low structural defects in lithium-rich layered oxides, which decrease the oxygen loss and manganese reduction and therefore depress the migration of transition metal ions and phase transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cheng FY, Liang J, Tao ZL, Chen J (2011) Adv Mater 23:1695–1715

    Article  CAS  Google Scholar 

  2. Dou SM (2013) J Solid State Electrochem 17:911–926

    Article  CAS  Google Scholar 

  3. Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Energy Environ Sci 4:3243–3262

    Article  CAS  Google Scholar 

  4. Xiang XD, Fu Z, Li WS (2013) J Solid State Electrochem 17:1201–1206

    Article  CAS  Google Scholar 

  5. Choi NS, Chen ZH, Freunberger SA, Ji XL, Sun YK, Amine K, Yushin G, Nazar LF, Cho J, Bruce PG (2012) Angew Chem Int Ed 51:9994–10024

    Article  CAS  Google Scholar 

  6. Manthiram A (2011) J Phys Chem Lett 2:176–184

    Article  CAS  Google Scholar 

  7. Guan XT, Ding B, Liu XF, Zhu JJ, Mi CH, Zhang XG (2013) J Solid State Electrochem 17:2087–2093

    Article  CAS  Google Scholar 

  8. Armstrong AR, Holzapfel M, Novák P, Johnson CS, Kang SH, Thackeray MM, Bruce PG (2006) J Am Chem Soc 128:8694–8698

    Article  CAS  Google Scholar 

  9. Hong J, Lim HD, Lee M, Kim SW, Kim H, Oh ST, Chung GC, Kang K (2012) Chem Mater 24:2692–2697

    Article  CAS  Google Scholar 

  10. Wang CC, Jarvis KA, Ferreira PJ, Manthiram A (2013) Chem Mater 25:3267–3275

    Article  CAS  Google Scholar 

  11. Wang CC, Manthiram A (2013) J Mater Chem A 1:10209–10217

    Article  CAS  Google Scholar 

  12. Liu J, Reeja-Jayan B, Manthiram A (2010) J Phys Chem C 114:9528–9533

    Article  CAS  Google Scholar 

  13. Liu J, Manthiram A (2010) J Mater Chem 20:3961–3967

    Article  CAS  Google Scholar 

  14. Song BH, Liu ZW, Lai MO, Lu L (2012) Phys Chem Chem Phys 14:12875–12883

    Article  CAS  Google Scholar 

  15. Amine K, Chen ZH, Zhang Z, Liu J, Lu WQ, Qin Y, Lu J, Curtis L, Sun YK (2011) J Mater Chem 21:17754–17759

    Article  CAS  Google Scholar 

  16. Xiang XD, Li XP, Li WS (2013) J Power Sources 230:89–95

    Article  CAS  Google Scholar 

  17. Guo XJ, Li YX, Zheng M, Zheng JM, Li J, Gong ZL, Yang Y (2008) J Power Sources 184:414–419

    Article  CAS  Google Scholar 

  18. Deng YH, Liu SQ, Liang XX (2013) J Solid State Electrochem 17:1067–1075

    Article  CAS  Google Scholar 

  19. Fell CR, Carroll KJ, Chi MF, Meng YS (2010) J Electrochem Soc 157:A1202–A1211

    Article  CAS  Google Scholar 

  20. Johnson CS, Li N, Lefief C, Thackeray MM (2007) Electrochem Commun 9:787–795

    Article  CAS  Google Scholar 

  21. Johnson CS, Li NC, Lefief C, Vaughey JT, Thackeray MM (2008) Chem Mater 20:6095–6106

    Article  CAS  Google Scholar 

  22. Xiang XD, Li WS (2014) Electrochim Acta 127:259–265

    Article  CAS  Google Scholar 

  23. Wang J, Yao XY, Zhou XF, Liu ZP (2011) J Mater Chem 21:2544–2549

    Article  CAS  Google Scholar 

  24. Li Z, Du F, Bie XF, Zhang D, Cai YM, Cui XR, Wang CZ, Chen G, Wei YJ (2010) J Phys Chem C 114:2751–2757

    Google Scholar 

  25. Yu DYW, Yanagida K, Kato Y, Nakamura H (2009) J Electrochem Soc 156:A417–A424

    Article  CAS  Google Scholar 

  26. Bréger J, Jiang M, Dupré N, Meng YS, Shao-Horn Y, Ceder G, Grey C (2005) J Solid State Chem 178:2575–2585

    Article  Google Scholar 

  27. Liu JL, Hou MY, Yi J, Cuo SS, Wang CX, Xia YY (2014) Energy Environ Sci 7:705–714

    Article  CAS  Google Scholar 

  28. Jarvis KA, Deng ZQ, Allard LF, Manthiram A, Ferreira PJ (2012) J Mater Chem 22:11550–11555

    Article  CAS  Google Scholar 

  29. Yu HJ, Zhou HS (2013) J Phys Chem Lett 4:1268–1280

    Article  CAS  Google Scholar 

  30. Zhang LQ, Takada K, Ohta N, Fukuda K, Osada M, Wang LZ, Sasaki T, Watanabe M (2005) J Electrochem Soc 152:A171–A178

    Article  CAS  Google Scholar 

  31. Yu HJ, Kim H, Wang YR, He P, Asakura D, Nakamura Y, Zhou HS (2012) Phys Chem Chem Phys 14:6584–6595

    Article  Google Scholar 

  32. Hong J, Seo DH, Kim SW, Gwon H, Oh ST, Kang K (2010) J Mater Chem 20:10179–10186

    Article  CAS  Google Scholar 

  33. Deng ZQ, Manthiram A (2011) J Phys Chem C 115:7097–7103

    Article  CAS  Google Scholar 

  34. Lin J, Mu DB, Jin Y, Wu BR, Ma YF, Wu F (2013) J Power Sources 230:76–80

    Article  CAS  Google Scholar 

  35. Boulineau A, Simonin L, Colin J, Bourbon C, Patoux S (2013) Nano Lett 13:3857–3863

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is financially supported from the joint project of the National Natural Science Foundation of China and the Natural Science Foundation of Guangdong Province (Grant No. U1134002), the National Natural Science Foundation (Grant No. 21273084), the Natural Science Fund of Guangdong Province (Grant No. 10351063101000001), and the key project of Science and Technology in Guangdong Province (Grant No. 2012A010702003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weishan Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, X., Li, W. Facile synthesis of lithium-rich layered oxide Li[Li0.2Ni0.2Mn0.6]O2 as cathode of lithium-ion batteries with improved cyclic performance. J Solid State Electrochem 19, 221–227 (2015). https://doi.org/10.1007/s10008-014-2590-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2590-0

Keywords

Navigation