Skip to main content
Log in

The effect of pH and selenization on the properties of CuInSe2 thin films prepared by electrodeposition technique for device applications

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

We have synthesized CuInSe2 (CIS) thin films from an aqueous electrolyte by potentiostatic electrochemical technique at room temperature. The effects of pH and selenization on the properties of CIS layer have been thoroughly investigated. The studies were carried out on the samples prepared in as-prepared bath with pH 2.5 and later adjusted to 1.2. Cyclic voltammetry (CV) was studied at slow scan rate to optimize the deposition parameters. The prepared thin films were selenized in a tubular furnace at 400 °C for 20 min in selenium atmosphere. Structural, optical, compositional, morphological, and electrical properties were studied with the help of X-ray diffractometer, Uv-vis absorption spectroscopy, energy dispersive X-ray analysis (EDAX), scanning electron microscopy (SEM), and current–voltage (IV) measurements. The prominent reflections (112), (204/220), and (312/116) of tetragonal CIS have been exhibited for all as-deposited and selenized samples. The energy band gap of the selenized CIS thin film was found to be ~1.03 eV. Granular, uniform, and densely packed surface morphology was observed for as-deposited and selenized samples electrodeposited at −0.6 and −0.8 V versus Ag/AgCl for the pH of bath 1.2 and 2.5, respectively. EDAX result reveals the stoichiometric CIS films can be electrodeposited at −0.6 and −0.8 V with pH of the bath 1.2 and 2.5, respectively. The ideality factor (η) deducted from IV measurements was found to be reduced from 1.6 to 1.3 and 1.9 to 1.2 after selenization of samples grown at −0.6 and −0.8 V, respectively, revealing the formation of ideal diode due to elimination of surface leakage current. Photoelectrochemical (PEC) measurement confirms the growth of p-type CIS thin film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Chaure NB, Young J, Samantilleke AP, Dharmadasa IM (2004) Sol Energy Mater Sol Cells 81:125–133

    Article  CAS  Google Scholar 

  2. Jackson P, Hariskos D, Lotter E, Paetel S, Wuerz R, Menner R, Wischmann W, Powalla M (2011) Prog Photovolt Res Appl 19:894–897

    Article  CAS  Google Scholar 

  3. Lakhe M, Chaure NB (2014) Sol Energy Mater Sol Cells 123:122–129

    Article  CAS  Google Scholar 

  4. Moharram A, Hafiz MM, Salem A (2001) Appl Surf Sci 172:1–2

    Article  Google Scholar 

  5. Repins IM, Contreras B, Egaas D, Scharf J, Perkins C, To B, Noufi R (2008) Prog Photovolt Res Appl 16:235–239

    Article  CAS  Google Scholar 

  6. Terasako T, Uno Y, Kariya T (2006) Sol Energy Mater Sol Cells 90:262–275

    Article  CAS  Google Scholar 

  7. Niki S, Yamada A, Hunger R (2002) J Cryst Growth 237–239:1993–1999

    Article  Google Scholar 

  8. Tiwari AN, Krejci M, Haug FJ, Zogg H (1999) Prog Photovolt Res Appl 7:393–397

    Article  CAS  Google Scholar 

  9. Ashida A, Hachiuma Y, Yamamoyo N, Cho Y (1994) J Math Sci Lett 13:1181–1184

    Article  CAS  Google Scholar 

  10. Wang XL, Wang GJ, Tian BL, Du ZL (2010) Chin Sci Bull 55:1854–1858

    Article  CAS  Google Scholar 

  11. Lee H, Lee W, Kim J, Ko M, Kim K, Seo K, Lee D, Kim H (2013) Electrochim Acta 87:450–456

    Article  CAS  Google Scholar 

  12. Chaure NB, Samantilleke AP, Burton RP, Young J, Dharmadasa IM (2005) Thin Solid Films 472:212–216

    Article  CAS  Google Scholar 

  13. Yang J, Liu L, Li J, Liu Y (2012) Electrochem Solid State Lett 15:D19–D21

    Article  CAS  Google Scholar 

  14. Padros A, Briones F, Sanz F (2010) Electrochem Commun 12:1025–1029

    Article  Google Scholar 

  15. Dhanwate VN, Chaure NB (2012) Appl Nanosci 3:1–5

    Article  Google Scholar 

  16. Maldes M, Vazquez M, Goossens A (2008) Electrochim Acta 54:524–529

    Article  Google Scholar 

  17. Schon JH, Alberts V, Bucher E (1999) Semicond Sci Technol 14:657–659

    Article  CAS  Google Scholar 

  18. Mandati S, Sarada BV, Dey SR, Joshi SV (2013) J Electrochem Soc 160:D173–D177

    Article  CAS  Google Scholar 

  19. Bouraiou A, Aida MS, Meglali O, Attaf N (2011) Curr Appl Phys 11:1173–1178

    Article  Google Scholar 

  20. Calixto ME, Sebastian PJ, Bhattacharya RN, Noufi R (1999) Sol Energy Mater Sol Cells 59:75–84

    Article  CAS  Google Scholar 

  21. Bao-Ping S, Shan P, Bin-Bin H, Guang-Hong Y, Shao-Ming W, Zu-Liang D (2013) J Inorg Mater 28:141–145

    Article  Google Scholar 

  22. Harris TM, Wilson JL, Bleakley M (1999) J Electrochem Soc 146:1461–1464

    Article  CAS  Google Scholar 

  23. Pourbiax M (1966) Atlas of electrochemical equlibra. Pergamon Press, New York

    Google Scholar 

  24. Kemell M, Ritala M, Leskela M (2005) Crit Rev Solid State Mater Sci 30:1–31

    Article  CAS  Google Scholar 

  25. Oda Y, Matsubayashi M, Minemoto T (2009) J Cryst Growth 311:738–741

    Article  CAS  Google Scholar 

  26. Culliti BD, Stock SR (2001) Elements of x-ray diffraction. NJ Prentice-Hall Inc., Englewood Cliff

    Google Scholar 

  27. Nawale S, Ravi V, Mulla IS (2009) Sensors Actuators B 139:466–170

    Article  Google Scholar 

  28. Kulkurni SK (2007) Nanotechnology, principles and applications. Capital publishing Co., India

    Google Scholar 

  29. Gupta S, Patidar D, Saxena NS, Sharma K (2009) Chalcogenide Lett 6:723–731

    CAS  Google Scholar 

  30. Tung RT (1992) Phys Rev B 45:13509–13523

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the finacial support from Defence Research and Development Organisation (DRDO), New Delhi under the major project grant ERIP/ER/10003866/M/01/1388.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. B. Chaure.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rohom, A.B., Londhe, P.U. & Chaure, N.B. The effect of pH and selenization on the properties of CuInSe2 thin films prepared by electrodeposition technique for device applications. J Solid State Electrochem 19, 201–210 (2015). https://doi.org/10.1007/s10008-014-2582-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2582-0

Keywords

Navigation