Skip to main content
Log in

On the origin of exciton formation in dye doped Alq3 OLEDs

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Electrically Detected Magnetic Resonance (EDMR) was used to investigate the influence of dye doping on spin-dependent exciton formation in aluminum (III) 8-hydroxyquinoline (Alq3) based Organic Light Emitting Diodes (OLEDs) with different device structures. 4-(dicyanomethylene)-2-methyl-6-{2-[(4-diphenylamino)-phenyl]ethyl}-4H-pyran (DCM-TPA) and 5,6,11,12-tetraphenylnaphthacene (Rubrene) were used as dopants. Results at room temperature show significant differences on the EDMR spectra (g-factor and linewidth) of doped and undoped devices. Signals from DCM-TPA and Rubrene dye doped OLEDs showed strong temperature dependence, with signal intensity increasing by 2 orders of magnitude below 200 K for DCM-TPA dye doped OLEDs and increasing by ∼1 order of magnitude below 225 K for the Rubrene dye doped device, while undoped devices shows almost no temperature dependence. By adding a “spacer” layer of undoped Alq3 at the recombination zone, changes in bias voltage were used to shift the recombination from doped to undoped region and correlate that with changes in the EDMR spectrum. Our results are indicating that charge trapping on the dopant followed by recombination is the main mechanism of light emission in the investigated devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. C.W. Tang, S.A. VanSlyke, Appl. Phys. Lett. 51, 913–915 (1987)

    Article  ADS  Google Scholar 

  2. C.W. Tang, S.A. VanSlyke, C.H. Chen, J. Appl. Phys. 65, 3610–3616 (1989)

    Article  ADS  Google Scholar 

  3. C. Adachi, M.A. Baldo, S.R. Forrest, M.E. Thompson, Appl. Phys. Lett. 77, 904–906 (2000)

    Article  ADS  Google Scholar 

  4. M.A. Baldo, M.E. Thompson, S.R. Forrest, Nature 403, 750–753 (2000)

    Article  ADS  Google Scholar 

  5. A.A. Shoustikov, Y. Yujian, M.E. Thompson, IEEE J. Sel. Top. Quantum Electron. 4, 3–13 (1998)

    Article  Google Scholar 

  6. J. Kido, Y. Iizumi, Appl. Phys. Lett. 73, 2721–2723 (1998)

    Article  ADS  Google Scholar 

  7. Y. Hamada, H. Kanno, T. Tsujioka, H. Takahashi, T. Usuki, Appl. Phys. Lett. 75, 1682–1684 (1999)

    Article  ADS  Google Scholar 

  8. J. Chen, D. Ma, J. Lumin. 122–123, 636–638 (2007)

    Article  Google Scholar 

  9. L. Wang, Y. Jiang, J. Luo, Y. Zhou, J. Zhou, J. Wang, J. Pei, Y. Cao, Adv. Mater. 21, 4854–4858 (2009)

    Article  Google Scholar 

  10. H. Nakanotani, M. Saito, H. Nakamura, C. Adachi, Adv. Funct. Mater. 20, 1610–1615 (2010)

    Article  Google Scholar 

  11. J.-H. Jou, S.-M. Shen, C.-R. Lin, Y.-S. Wang, Y.-C. Chou, S.-Z. Chen, Y.-C. Jou, Org. Electron. 12, 865–868 (2011)

    Article  Google Scholar 

  12. Q. Yang, Y. Hao, Z. Wang, Y. Li, H. Wang, B. Xu, Synth. Met. 162, 398–401 (2012)

    Article  Google Scholar 

  13. J.-H. Jou, P.-Y. Hwanga, W.-B. Wanga, C.-W. Lina, Y.-C. Joua, Y.-L. Chena, J.-J. Shyueb, S.-M. Shena, S.-Z. Chena, Org. Electron. 13, 899–904 (2012)

    Article  Google Scholar 

  14. J.S. Wilson, A.S. Dhoot, A.J.A.B. Seeley, M.S. Khan, A. Kohler, R.H. Friend, Nature 413, 828–831 (2001)

    Article  ADS  Google Scholar 

  15. D. Beljonne, A. Ye, Z. Shuai, J.L. Brédas, Adv. Funct. Mater. 14, 684–692 (2004)

    Article  Google Scholar 

  16. M. Segal, M.A. Baldo, R.J. Holmes, S.R. Forrest, Z.G. Soos, Phys. Rev., B Solid State 68, 75211 (2003)

    Article  ADS  Google Scholar 

  17. R.N. Bera, Y. Sakakibara, M. Tokumoto, K. Yase, Jpn. J. Appl. Phys. 42, 7379–7380 (2003)

    Article  ADS  Google Scholar 

  18. X. Gong, J.C. Ostrowski, D. Moses, G.C. Bazan, A.J. Heeger, Adv. Funct. Mater. 13, 439–444 (2003)

    Article  Google Scholar 

  19. F.A. Castro, G.B. Silva, L.F. Santos, R.M. Faria, F. Nüesch, L. Zuppiroli, C.F.O. Graeff, J. Non-Cryst. Solids 338–340, 622–625 (2004)

    Article  Google Scholar 

  20. C.F.O. Graeff, G.B. Silva, F. Nüesch, L. Zuppiroli, Eur. Phys. J. E 18, 21–28 (2005)

    Article  Google Scholar 

  21. F.A. Castro, G.B. Silva, F. Nüesch, L. Zuppiroli, C.F.O. Graeff, Org. Electron. 8, 249–255 (2007)

    Article  Google Scholar 

  22. C.G. Yang, E. Ehrenfreund, F. Wang, T. Drori, Z.V. Vardeny, Phys. Rev., B Solid State 78, 205312-6 (2008)

    ADS  Google Scholar 

  23. T.D. Pawlik, M.E. Kondakova, D.J. Giesen, J.C. Deaton, D.Y. Kondakov, J. Soc. Inf. Disp. 17, 279–286 (2009)

    Article  Google Scholar 

  24. G. Li, C.H. Kim, P.A. Lane, J. Shinar, Phys. Rev., B Solid State 69, 165311-7 (2004)

    ADS  Google Scholar 

  25. J.M. Lupton, D.R. McCamey, C. Boehme, ChemPhysChem 11, 3040–3058 (2010)

    Article  Google Scholar 

  26. M.Y. Chan, S.L. Lai, M.K. Fung, C.S. Lee, S.T. Lee, Appl. Phys. Lett. 90, 023504-3 (2007)

    Article  ADS  Google Scholar 

  27. J.A. Gómez, Ph.D. thesis: “Electrically detected magnetic resonance study of organics electronics and optoelectronics devices”. Department of Physics, FFCLRP, Universidade de São Paulo (2009). http://www.teses.usp.br/teses/disponiveis/59/59135/tde-16102009-154941/

  28. Y.Q. Peng, Q.S. Yang, H.W. Xing, X.S. Li, J.T. Yuan, C.Z. Ma, R.S. Wang, Appl. Phys. A, Mater. Sci. Process. 93, 559–564 (2008)

    Article  Google Scholar 

  29. D. Berner, F. Nuesch, E. Tutis, C. Ma, X. Wang, B. Zhang, L. Zuppiroli, J. Appl. Phys. 95, 3749–3753 (2004)

    Article  ADS  Google Scholar 

  30. F. Nüesch, D. Berner, E. Tutis, M. Schaer, C. Ma, X. Wang, B. Zhang, L. Zuppiroli, Adv. Funct. Mater. 15, 323–330 (2005)

    Article  Google Scholar 

  31. M.A. Wolak, J. Delcamp, C.A. Landis, P.A. Lane, J. Anthony, Z. Kafafi, Adv. Funct. Mater. 16, 1943–1949 (2006)

    Article  Google Scholar 

  32. B. Wei, Y.J. Liao, J.Z. Liu, L. Lu, J. Cao, J. Wang, J.H. Zhang, Chin. Phys. B 19, 037105-6 (2010)

    ADS  Google Scholar 

  33. A. Uddin, C.B. Lee, J. Wong, J. Lumin. 131, 1037–1041 (2011)

    Article  Google Scholar 

  34. A. Uddin, C.B. Lee, Phys. Status Solidi C 8, 80–83 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was sponsored by the following agencies: FAPESP, CLAF/CNPq, CAPES, and INCT-FAPESP/CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Gómez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gómez, J.A., Castro, F.A., Nüesch, F. et al. On the origin of exciton formation in dye doped Alq3 OLEDs. Appl. Phys. A 108, 727–731 (2012). https://doi.org/10.1007/s00339-012-6957-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-6957-8

Keywords

Navigation